ACTES PROVISOIRES
Table des matières

A1 - Vers le découpillage de modes de rupture dans un milieu élastique orthotrope tridimensionnel
Jérôme Afoutou ... 5

A2 - Study of the degradation of the hemicelluloses during a soft pyrolysis treatment of the beech and fir wood
Rodolfo Andrade Breves ... 9

A3 - Panneaux de bois ignifuges sans colle
Karina Antoun ... 13

A4 - Influence de l’effet mécanosorptif sur la fissuration du Padouk
Martian Asseko Ella .. 17

A5 - Développement d’un robot forestier autonome
Fida Ben Abdallah ... 21

A6 - Etude des colophanes de la résine de pin issus de gemmes différentes
Arsène Bikoro Bi Athomo .. 25

A7 - Détermination des propriétés du bois par interaction lumineuse interprétation, mesure et identification des mécanismes et des paramètres d’influence
Juliette Boivin ... 30

A8 - Evaluation de l’impact des entailles de poutre en bois de sapin pectiné (Abies alba) sur des essais Bing
Arthur Bontemps .. 33

A9 - Mécano-biologie du cambium : influence des interactions mécaniques entre bois et écorce sur la formation du bois
Thomas Boursat .. 37

A10 - Accompagnement de jeunes élèves à la découverte des arbres via l’enseignement par la recherche
Kévin Candelier .. 41

A11 - Wood density prediction using near-infrared hyperspectral imaging : an application for early selection of Eucalyptus grandis trees.
Gilles Chaix ... 45

A12 - Une approche innovante pour l’étude des transferts couplés d’eau et d’oxygène dans le bois de chêne de tonnellerie
Julien Colin ... 49

A13 - Mise en œuvre de chitosanes fonctionnalisés dans la formulation d’adhésifs structuraux à destination de la filière bois
Helene De Baynast .. 53

A14 - L’agroforesterie : une approche pour la protection du bois
Nafissa Dehimeche .. 55

A15 - Caractérisation et modélisation de placages pour l’optimisation et l’homogénéisation des propriétés mécaniques de LVL/ contreplaqué
Leyne Demoulin .. 59

A16 - Développement d’une teinte naturelle pour le bois
Léa Diaz ... 61

A17 - Utilisation de la spectroscopie proche infrarouge pour la prédiction de la densité de 3 essences de bois ivoiriennes
Thomas Digbe .. 65
| A18 - Alt'R&D, collectif de d'ingénieurs-chercheurs sur des projets interdisciplinaires à l'interface entre instituts de recherche/PME |
| Anna Dupleix |
| A19 - Design et synthèse de composés amphiphiles xylo-sourcés originaux pour l'obtention d'ingrédients fonctionnels anti-oxydants et anti-prolifératifs |
| Georges Eid |
| A20 - Comparaison de la rigidité de flexion de l'arbre sur pied de deux clones d'hévéa (Hevea brasiliensis) de plantation |
| Arnauld Clauvy's Engonga Edzang |
| A21 - Study of the relationship between attenuation of elastic waves and physical-chemical properties of wood for the non-destructive evaluation of wooden infrastructures |
| Luis Espinosa |
| A22 - Impact du transfert simultané masse-chaleur dans la mesure de la conductivité thermique d'isolants biosourcés |
| Daniela Florez |
| A23 - AIFFOHR : Apports de l'Industrie du Futur dans la Fabrication de placages et de panneaux de contreplaqués de Hêtres et de peupliers issus d'une Ressource locale |
| Rémy Frayssinhes |
| A24 - Proposition d'une méthode de conception-fabrication pour l'architecture en bois. Application du procédé de Stratocoception® |
| Victor Frechard |
| A25 - Etat de l'art du sciage courbe en merranderie : méthodes et perspectives |
| Clément Genty |
| B1 - De la branche à la molécule : une nouvelle source de bois de noeuds valorisable pour le marché de la cosmétique ? |
| Pauline Gérardin |
| B2 - Mécanismes moléculaires du remodelage du bois en réponse au froid chez l'Eucalyptus |
| Ines Hadj Bachir |
| B3 - Outils de traitement du signal pour l'évaluation non destructive des murs à ossature bois par ondes RADAR |
| Seif Eddine Hamdi |
| B4 - Comparison in extractives chemical signatures between branch, knot and bark fractions from forestry and agroforestry walnut trees |
| Lucie Heim |
| B5 - Caractérisation de réactions de greffage sur le bois par Py-GC/MS |
| David Hentges |
| B6 - Identify the factors of creep behavior on small clear wood |
| Tai-Yun Hsieh |
| B7 - Suivi des déformations d’un panneau de bois peint du patrimoine : effet du cadre, du parquetage et de variations hygrothermiques |
| Delphine Jullien |
| B8 - Vers un dialogue numérique-métrieologie de la réplique de la charpente de Notre dame de Paris |
| Lawrence Kauffmann |
| B9 - Controlled lignin oxidation and hemicellulose deacetylation inside beech wood |
| Assira Keralta |
| B10 - Caractérisation temporelle des déformations microscopiques dans les panneaux de fibres en conditions humides |
| Pierre Kibleur |
| Coline Lemaitre |
| B12 - Etude des propriétés physiques et chimiques des parois cellulaires végétales par microscopie optique en champ proche multimodale |
| Aude Lereu |
B13 - Upcycling de déchets de cuir : de l’élaboration de nouveaux matériaux à l’émergence d’une nouvelle marque
Leo Leroyer 145

B14 - Fabrication de placage multicouche en bois pré-imprégné par une résine furfurylique
Adrien Magne 150

B15 - Genetic and environmental determinants of relationships between wood properties, water use efficiency and biomass production
Chrissy Garel Makouanzi Ekomo 152

B16 - Le Bois pour les structures des véhicules (BOOST) caractérisation mécanique et physique locale de placages pour la conception optimisée de structures
Caroline Marc 157

B17 - Etude de la migration d’humidité en condition non-isotherme dans le bois massif par tomographie à rayons X
Benoît Martin 161

B18 - Solutions de revêtements bio-sourcés chaux-chanvre et terre-chanvre pour l’éco-rénovation des bâtiments anciens
Dalel Medjelekh 166

B19 - Extraction et fractionnement d’hémicelluloses d’Aucoumea Klaineana Pierre par explosion à la vapeur et procédés membranaires
Errol Mougnala Moukagni 171

B20 - Essais de flexion 4 points pour déterminer les résistances et rigidités en flexion et à l’effort tranchant de panneaux en bois lamellés croisés (CLT)
Alma Narcy 175

B21 - Simulation numérique des structures hybrides acier-bois en cas d’incendie
Manh Hung Nguyen 179

B22 - Influence du tempérament écologique sur les propriétés technologiques du bois d’essences peu connues d’origine gabonaise
Estelle Nkene Mezui 183

B23 - Peut-on déterminer les contraintes résiduelles par micro-spectroscopie RAMAN au sein d’échantillon de bois de peuplier ?
Aubin Normand 186

B24 - Impact des différents itinéraires sylvicoles sur les sollicitations mécaniques perçues par les tiges de Douglas : snapshot à 50 ans
Estelle Noyer 190

B25 - Comportement en flexion d’une poutre en bois abouté : cas de l’okan
Charly Julien Nyobe 192

C1 - Mesure « en routine » des profils d’humidité dans le chêne lors du séchage et confrontation à la simulation numérique
Sahbi Ouertani 196

C2 - Mise en évidence de l’effet retardé de l’humidité sur le comportement mécanique d’une poutre de bois
Claude Feldman Pambou Nziengui 200

C3 - Influence de la réticulation du réseau fibrillaire cellulosique sur le comportement élastique effectif de la paroi cellulaire du bois
Nhat Tung Phan 202

C4 - Durabilité du collage du CLT et du lamellé-collé en chêne et en mixte peuplier-chêne en fonction de la pression de collage et du type de colle
Citra Purba 206

C5 - Profil de contraintes dans les interfaces colles bois-bois
Christian Quintero 210

C6 - Etude préliminaire sur l’identification des espèces de bois d’ébène de Madagascar à partir des Spectres Proche InfraRouge des microcarottes de bois
Andry Clarel Raobelina 214

C7 - Evaluation des potentialités d’un spectromètre portatif à faible coût sur la discrimination de 3 espèces de Dalbergia et 3 espèces de Diospyros de Madagascar : essais sur
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8</td>
<td>Development of protein-based adhesives for wood composite materials</td>
<td>Nidal Del Valle Raydan</td>
<td>223</td>
</tr>
<tr>
<td>C9</td>
<td>Appui dans la délimitation taxonomique d’espèces de bois précieux de Madagascar à travers l’analyse quantitative des extractibles et des phénols totaux du bois, cas de Dalbergia mollis Bosser & R.Rabev.</td>
<td>Andriambelo Radonirina Razafimahatratra</td>
<td>227</td>
</tr>
<tr>
<td>C10</td>
<td>Modélisation de l’endommagement d’un matériau hétérogène biossourcé : application au bois massif</td>
<td>Amal Rebhi</td>
<td>231</td>
</tr>
<tr>
<td>C11</td>
<td>Role of potassium impregnation on the interactions of lignocellulosic components of biomass during torrefaction</td>
<td>Larissa Richa</td>
<td>235</td>
</tr>
<tr>
<td>C12</td>
<td>Studies on the Conservation of the Mona Lisa : numerical methods for future preservation</td>
<td>Lorenzo Riparbelli</td>
<td>239</td>
</tr>
<tr>
<td>C13</td>
<td>Quantifier les extractibles dans le bois de pin maritime (P. pinaster) : utilisation de la relaxométrie, et de l’analyse en composantes indépendantes couplée à la régression linéaire multiple</td>
<td>Morandise Rubini</td>
<td>243</td>
</tr>
<tr>
<td>C14</td>
<td>Thermo-densification of beech wood pretreated with furfurylation</td>
<td>Prabu Satria Sejati</td>
<td>247</td>
</tr>
<tr>
<td>C15</td>
<td>Le Bois : support de création et enjeux de préservation</td>
<td>Pierre Stépanoff</td>
<td>250</td>
</tr>
<tr>
<td>C16</td>
<td>Tirer parti d’une énergie fluctuante pour le séchage du bois grâce à un automate intelligent</td>
<td>Antoine Stéphan</td>
<td>255</td>
</tr>
<tr>
<td>C17</td>
<td>Etude de sensibilité des paramètres descriptifs du comportement d’une structure ancienne en bois : la halle de Villeréal</td>
<td>Renaud Tevi Komlan</td>
<td>259</td>
</tr>
<tr>
<td>C18</td>
<td>Recyclage du MDF par explosion à la vapeur</td>
<td>Sarah Troilo</td>
<td>263</td>
</tr>
<tr>
<td>C19</td>
<td>Influence des conditions climatiques variables sur les propriétés mécaniques des structures en bois</td>
<td>Placide Uwizeyimana</td>
<td>268</td>
</tr>
<tr>
<td>C20</td>
<td>Caractérisation expérimentale du surdimensionnement mécanique des branches par rapport à leur poids propre.</td>
<td>Arnoul Van Rooij</td>
<td>272</td>
</tr>
<tr>
<td>C21</td>
<td>Valorisation durable des arbres de Noël comme fibres de renforts pour des applications bio-composites</td>
<td>Amandine Viretto</td>
<td>276</td>
</tr>
<tr>
<td>C22</td>
<td>Moisture effects on 4-point bending behavior of GFRP-balsa sandwich by acoustic emission and infrared thermography</td>
<td>Yuan Wu</td>
<td>280</td>
</tr>
<tr>
<td>C23</td>
<td>Tanin-based self-blowing biomass foam by humins substituting formaldehyde</td>
<td>Chen Xinyi</td>
<td>285</td>
</tr>
<tr>
<td>C24</td>
<td>Study of the wettability and color modification of torrefied wood</td>
<td>Bengang Zhang</td>
<td>289</td>
</tr>
</tbody>
</table>
Vers le découplage de modes de rupture dans un milieu élastique orthotrope tridimensionnel.

AFOUTOU Jérôme¹, DUBOIS Frédéric¹, SAUVAT Nicolas¹, TAKARLI Mokhfi¹

¹Université de Limoges, Laboratoire GC2D, Egletons, France
jerome.afoutou@unilim.fr

Mots clefs : découplage de modes ; orthotrope tridimensionnel ; intégrales invariantes ; taux de restitution d’énergie ; profil de fissuration 3D.

Contexte et objectifs

Prévenir les ruptures fragiles des structures bois pour des modes de ruine liés à de nouveaux usages comme les immeubles ou à des ambiances hygrothermiques exigeantes est une problématique à prendre en compte afin de dynamiser leur utilisation. La réponse passe par la connaissance du comportement mécanique et des mécanismes d’endommagement et de fissuration de ces structures sous l’action des sollicitations hydrique et thermomécanique. Les outils « classiques » d’analyse sont généralement établis pour des configurations bidimensionnelles, alors que pour des grosses sections de bois au niveau des assemblages métalliques par exemple la sollicitation se fait avec un angle variable par rapport aux cernes. De plus, les propriétés mécaniques sont sujettes à la présence d’un gradient d’humidité dans la section.

La présente étude rentre dans le cadre d’une thèse qui propose le développement d’un outil de modélisation permettant d’anticiper l’apparition et le développement des pathologies de type fissuration et endommagement en y intégrant, à la fois, un comportement différé (fluage et fatigue des éléments structuraux) et l’interaction des conditions climatiques de l’environnement.

Outils et méthodes

Intégrale invariante MO3D

Dans la sphère des intégrales invariantes utilisées pour évaluer les taux de restitution d’énergie, figure l’intégrale M utilisée pour découpler les modes de ruptures. Nous avons dans un premier temps généralisé l’intégrale M2D proposée par Chen et Shield (1977) pour les cas tridimensionnels. La forme générale est donnée par l’équation (1).

Le premier terme représente le découplage de mode mixte pour une fissure stationnaire. Le second terme est relatif à une pression quelconque sur les lèvres de fissure tandis que le dernier terme correspond à la part de la propagation de la fissure.

Une forme similaire de cette intégrale a été utilisée par Moutou Pitti R. et al. (2006) pour étudier la propagation de fissure dans un matériau viscoélastique orthotrope. (u) et (v) représentent des champs de déplacements réels et virtuels cinématiquement admissibles.

\[M_{ij}^{3D} = \frac{1}{2} \int_V \left(\sigma_{ij}^u (v_1, -\sigma_{ij}^v) u_{ij} \right) \theta_{ij} dV - \frac{1}{2} \int_{[G]} \left(\sigma_{ij}^u u_{ij} + \sigma_{ij}^v v_{ij} \right) n_i \theta_k dS + \frac{1}{2} \int_{W_{ii}} \left((\sigma_{ij}^u (u_{ij}),_1 + \sigma_{ij}^v (v_{ij}),_1) \right) \left((\sigma_{ij}^u u_{ij},_1 + \sigma_{ij}^v v_{ij},_1) \right) \theta_k dV \] (1)

Cette intégrale est basée sur l’utilisation d’un champ virtuel de déplacement ou de contrainte au voisinage de la fissure. Si le champ virtuel existe, l’interprétation physique est la même que celle proposée par Moutou Pitti R. et al. (2006).
A l’opposée d’un cas bidimensionnel, les expressions analytiques pour décrire les champs de déplacements, de déformations et de contraintes proches du fond de fissure existent peu en 3D. C’est un domaine de la Mécanique Linéaire de la Rupture qui nécessite encore des explorations.

Développement du champ de déplacement orthotrope 3D

La démarche a consisté de partir du champ de déplacement isotrope proposé par Irwin (1957) et de remplacer les complaisances élastiques réduites isotropes par des complaisances élastiques orthotropes. Nous obtenons un champ de déplacement avec un nouveau paramètre k_1^* qui reste à optimiser.

$$u_x = \frac{C_{11}}{4(k_1^*+1)} \cdot k_1^* \cdot \sqrt{\frac{r}{2\pi}} \cdot \left[(2k_1^* - 1) \cos \frac{\theta}{2} - \cos \frac{3\theta}{2}\right] - \frac{C_{12}}{4(k_1^*+1)} \cdot k_1^* \cdot \sqrt{\frac{r}{2\pi}} \cdot \left[(2k_1^* + 3) \sin \frac{\theta}{2} + \sin \frac{3\theta}{2}\right]$$

$$u_y = \frac{C_{11}}{4(k_1^*+1)} \cdot k_1^* \cdot \sqrt{\frac{r}{2\pi}} \cdot \left[(2k_1^* + 1) \sin \frac{\theta}{2} - \sin \frac{3\theta}{2}\right] + \frac{C_{12}}{4(k_1^*+1)} \cdot k_1^* \cdot \sqrt{\frac{r}{2\pi}} \cdot \left[(2k_1^* + 3) \cos \frac{\theta}{2} + \cos \frac{3\theta}{2}\right]$$

$$u_z = \frac{k_1^* \mu}{2\pi} \cdot \sqrt{\frac{r}{2\pi}} \cdot \left[(2k_1^* + 1) \sin \frac{\theta}{2}\right]$$

(2)

où C_{11} et C_{12} sont les complaisances élastiques réduites orthotropes en mode I et II (Valentin et Morlier 1982).

Validation numérique

La modélisation est faite sur le code aux Eléments Finis Castem18. L’objectif est de prouver que k_1^* est une constante. Les éprouvettes sont des Double Cantilever Beam à Inertie Variante (Fig. 2 utilisées pour la première fois par Dubois (1997), de dimensions : Epaisseur $\times 80 \times 170 \text{ mm}^3$. Elles sont sollicitées en mode d’ouverture (mode I) par une force unitaire de 1kN. La moitié de la géométrie est modélisée compte tenu de la symétrie géométrique et de la symétrie de chargement. Nous avons considéré un front de fissure traversant et rectiligne. Les grandeurs élastiques du bois utilisé sont issues des travaux de Guitard (1987). Le taux de restitution global est calculé à partir de l’intégrale G_{13} développée par El Kabir et al (2018). Après validation de l’indépendance du domaine d’intégration, des études paramétriques en fonction de la longueur de fissure et de la taille de l’éprouvette sont réalisées (Tab.1).
10ème journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Tab.1 : Valeurs de k_i^* moyennées sur la longueur de fissure en fonction des épaisseurs

<table>
<thead>
<tr>
<th>Épaisseur (mm)</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>60</th>
<th>100</th>
<th>140</th>
<th>Moyenne globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i^* (moyen)</td>
<td>2,22</td>
<td>2,21</td>
<td>2,20</td>
<td>2,17</td>
<td>2,16</td>
<td>2,15</td>
<td>2,18</td>
</tr>
<tr>
<td>cov</td>
<td>0,56%</td>
<td>0,57%</td>
<td>0,43%</td>
<td>0,25%</td>
<td>0,21%</td>
<td>0,22%</td>
<td>1,37%</td>
</tr>
</tbody>
</table>

Pour l’ensemble des épaisseurs, k_i^* connaît une variation maximale de 1,37% pour toutes longueurs de fissures, alors que la variation au sein d’une même éprouvette reste inférieure à 0,6%.

La distribution du taux de restitution le long du front de fissure (Tab. 2) est évaluée pour une longueur de fissure identique (80mm) pour toutes les épaisseurs.

Tab.2 : Valeurs de k_i^* moyennées sur la position dans le cœur de l’éprouvette en fonction de l’épaisseur (longueur de fissure : 80 mm)

<table>
<thead>
<tr>
<th>Épaisseur (mm)</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>60</th>
<th>100</th>
<th>140</th>
<th>Moyenne globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i^* (moyen)</td>
<td>2,22</td>
<td>2,21</td>
<td>2,20</td>
<td>2,18</td>
<td>2,16</td>
<td>2,15</td>
<td>2,19</td>
</tr>
<tr>
<td>cov</td>
<td>0,00%</td>
<td>0,13%</td>
<td>0,18%</td>
<td>0,47%</td>
<td>0,80%</td>
<td>0,90%</td>
<td>1,32%</td>
</tr>
</tbody>
</table>

Fig.3 : Taux de restitution global et somme des découplés en fonction de la longueur de fissure (cas d’épaisseur 70mm)

Fig.4 : Écarts entre G3D et $\sum Gi$ pour une longueur de fissure fixe (80mm)

Premiers résultats

Les résultats montrent que :
- L’hypothèse d’un front de fissure rectiligne est valable pour des épaisseurs jusqu’à 20mm
- Les faibles écarts (Fig. 4) majoritairement inférieurs à 6% entre le taux de restitution global et la somme des parts de chaque mode de rupture permet de prendre k_i^* constant dans toute l’éprouvette.
- Le paramètre k_i^* ne varie quasiment pas quelles que soient l’épaisseur et la longueur de fissure. On peut donc la supposer constante.
- Le champ de déplacements au voisinage du front de fissure proposé est pertinent au vue des premières validations.
Il parait nécessaire de retrouver le profil exact de fissure pour les grandes épaisseurs d'éprouvettes par émission acoustique afin de l'intégrer dans le modèle numérique.

Conclusion et démarche de la thèse
Dans ce travail, nous avons présenté une approche de découplage de modes de rupture dans un matériau orthotrope dans une configuration tridimensionnelle. Le découplage est fait à partir d’un champ isotrope de déplacement au voisinage du fond de fissure que nous avons modifié pour intégrer des effets d’orthotropie à partir des complaisances élastiques réduites. Les résultats obtenus sont une première étape de validation de la généralisation de l’intégrale $M\theta^{3D}$.

Références
Study of the degradation of the hemicelluloses during a soft pyrolysis treatment of the beech and fir wood

ANDRADE BREVES Rodolfo1,2 *, Anélie PETRISSANS2, Baptiste COLIN2, Rafael QUIRINO3, Maria José Araújo SALES1, Roseany de Vasconcelos Vieira Lopes 1, Mathieu PETRISSANS2

1 LabPolN, Universidade de Brasília, Brasil
2 Université de Lorraine, INRAE, LERMAB, F-88000 Epinal, France
3 Georgia Southern University, Georgia, USA
Corresponding author : rodolfo.breves@hotmail.com

Keywords : beech ; fir ; hemicelluloses ; soft pyrolysis ; TGA/DTG ; wood.

Introduction
The current ever rising environmental awareness by both the general public, industries and governments, encourages the study and research on natural, renewable raw material as a way to decrease the world’s dependency on unrenewable materials such as petroleum[1]. Among the many environmentally friendly raw materials available, wood has been widely used throughout the history of mankind for cooking, building and many other objectives. Even today, wood is still an important biomass, as it is the source of many different chemicals and fibers used in industries all over the world [2]. Wood is composed mainly of carbon, hydrogen and oxygen combined to form its three main biopolymers: hemicelluloses, cellulose and lignin, each with its own functions in the wood [3]. The biggest drawback in the usage of wood is how easy it can be degraded by the weather, insects, fungi and other threats. This high degradability is caused, among other factors, by the wood’s naturally high hygroscopy, caused by the hydroxy groups present in both hemicelluloses and cellulose [4]. Thermal treatments by soft pyrolysis are interesting ways to increase the life span of wood since, different from other treatments, it does not use any kind of harmful chemical. During a thermal treatment, the first biopolymer degraded by the heat is the hemicelluloses, followed by the cellulose and, finally, the lignin [5, 6]. One of the possible usages for wood and the making of plant fibers to be used as reinforcement materials in polymers. For that, the hemicelluloses are usually removed chemically so that the polymeric matrix can bond directly to the cellulosics, as it is stronger than the hemicelluloses [7]. This study presents the first results obtained on the degradation of hemicelluloses to improve the compatibility of wood fibers with a polyurethane matrix of biological origin. This work has for objective the treatment of beech and fir samples at different temperatures to degrade their hemicelluloses without significantly affecting their cellulose. We thus wish to produce a 100% organic material, reinforced with fibers.

Material and Method
The beech and fir boards were cut into 12 cm x 6 cm x 2 cm wood blocks. The blocks were weighted, left to dry at 104 °C until mass stabilization, then weighted again to calculate the water loss and left to cool down to room temperature in desiccators before the treatment. The wood samples were then put inside the reactor under 25 ml/min nitrogen flow (inert atmosphere) and left to rest for two minutes to saturate the interior of the reactor with nitrogen, after that, the samples were heated at 2 °C.min⁻¹ up to the treatment’s temperature, remaining at that temperature for 30 minutes and then turning off the heat and weighting the sample again to calculate the mass loss due to the thermodegradation. For the TGA/DTG analysis, the
samples were grinded to 1mm or lower particle size and left to dry at 104 °C overnight, then cooled down to room temperature in a dissector before the analysis. The temperature profile for the TGA is as follows: I – the sample is heated to 105 °C at 20 °C/min; II – 30 minutes isothermal; III – Sample is heated to 800 °C at 20 °C/min (steps I to III were done under N2 100 ml/min); IV - Sample is heated to 1000 °C at 20 °C/min; V – Samples is cooled down to removing temperature at -50 °C/min (steps IV and V done under Air 100 ml/min).

Results and discussion

Table 1 shows the data relative to the thermal treatment of the beech samples. The labeling pattern used for the samples is B representing the species (beech), followed by the temperature of the treatment (270, for example) and the heating rate after a comma (2, for 2 °C.min⁻¹).

Table 1: Data regarding the thermal treatment of the beech samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Green Mass (g)</th>
<th>Dried Mass (g)</th>
<th>Water loss (%)</th>
<th>Mass loss (%)</th>
<th>Mass after heat treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 255.2</td>
<td>106.93</td>
<td>98.76</td>
<td>6.97</td>
<td>85.25</td>
<td>13.68</td>
</tr>
<tr>
<td>B 270.2</td>
<td>107.04</td>
<td>98.43</td>
<td>8.04</td>
<td>81.72</td>
<td>16.97</td>
</tr>
<tr>
<td>B 275.2</td>
<td>106.93</td>
<td>98.79</td>
<td>7.61</td>
<td>75.35</td>
<td>23.72</td>
</tr>
<tr>
<td>B 280.2</td>
<td>106.75</td>
<td>88.55</td>
<td>7.68</td>
<td>72.61</td>
<td>26.32</td>
</tr>
<tr>
<td>B 285.2</td>
<td>105.36</td>
<td>96.94</td>
<td>7.99</td>
<td>96.31</td>
<td>28.45</td>
</tr>
<tr>
<td>B 290.2</td>
<td>107.09</td>
<td>99.06</td>
<td>7.49</td>
<td>67.24</td>
<td>32.12</td>
</tr>
<tr>
<td>B 295.2</td>
<td>106.93</td>
<td>97.49</td>
<td>8.83</td>
<td>64.58</td>
<td>33.76</td>
</tr>
<tr>
<td>B 300.2</td>
<td>111.36</td>
<td>102.42</td>
<td>8.03</td>
<td>63.13</td>
<td>38.36</td>
</tr>
<tr>
<td>B 315.2</td>
<td>108.57</td>
<td>100.85</td>
<td>7.11</td>
<td>47.87</td>
<td>52.12</td>
</tr>
</tbody>
</table>

The loss of water mass due to drying is constant (7-8%), which proves that we are working under reproducible conditions and that the wood is dry before treatment. We observe a strong dependence of the mass loss to the treatment temperature. The more the temperature increases (same heating rate, same treatment time) the greater the loss of mass becomes. The sample B 275.2 had a 23.72% mass loss, and the sample B 280.2 had a 26.32% mass loss. While mass loss alone cannot be used to decide whether or not the hemicelluloses of the samples have been completely degraded, as it varies a considerably from tree to tree, these values are within the content of hemicelluloses found independently by Spiridon et al. (2008) [8] and Fišerová et al. (2013) [9], who found, respectively, 21.35% and 26.59% of hemicelluloses in fir, indicating that those samples might have had their hemicelluloses completely degraded. The DTG of samples B 275.2 and B280.2 is shown in Figure 1, as well and the DTG of the samples Raw Beech, B 270,2 and B285,2, for comparison.
Figure 1: Derivate thermogravimetry (DTG) of the selected beech samples.

It is possible to see in Figure 1 that the hemicelluloses shoulder clearly evident in the DTG of the Raw Beech sample (2275 – 2700s), decreases as the hemicelluloses is degraded in B 270,2, apparently reaching a minimum in the B 275,2 sample. It can also be seen that the Celluloses peak (2750s), the tallest one, increases, also reaching an apparent maximum in B 275,2 and B 280,2, then decreasing again in B 280,2. That indicates us that before B 275,2 there is still hemicelluloses to be degraded, and after B 280,2 the hemicelluloses has been completely degraded and it is now the cellulose that is being degraded. While there are differences between the B 275,2 and B 280,2’s DTGs, they are too small and could be considered as instrumental error. The DTGs indicate us that the best temperatures to degrade the hemicelluloses of beech are 275 °C and 280 °C, but further characterization is needed [10].

Table 2 shows the data regarding the thermal treatment of the fir samples. The labeling system is analogous to the one used for the beech samples.

Table 2: Data regarding the thermal treatment of the fir samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Green Mass (g)</th>
<th>Dried Mass (g)</th>
<th>Water Loss (%)</th>
<th>Treated Mass (g)</th>
<th>Mass loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 255,2</td>
<td>67,16</td>
<td>62,01</td>
<td>7,67</td>
<td>59,13</td>
<td>4,64</td>
</tr>
<tr>
<td>F 255,2</td>
<td>70,02</td>
<td>64,85</td>
<td>7,38</td>
<td>61,63</td>
<td>4,97</td>
</tr>
<tr>
<td>F 270,2</td>
<td>69,53</td>
<td>64,19</td>
<td>7,68</td>
<td>58,92</td>
<td>8,21</td>
</tr>
<tr>
<td>F 270,2</td>
<td>70,20</td>
<td>64,76</td>
<td>7,75</td>
<td>59,29</td>
<td>8,45</td>
</tr>
<tr>
<td>F 285,2</td>
<td>70,15</td>
<td>64,70</td>
<td>7,77</td>
<td>55,32</td>
<td>14,49</td>
</tr>
<tr>
<td>F 285,2</td>
<td>69,67</td>
<td>64,42</td>
<td>7,54</td>
<td>54,72</td>
<td>25,06</td>
</tr>
<tr>
<td>F 300,2</td>
<td>69,20</td>
<td>64,10</td>
<td>7,98</td>
<td>48,04</td>
<td>25,05</td>
</tr>
<tr>
<td>F 300,2</td>
<td>69,14</td>
<td>63,98</td>
<td>7,46</td>
<td>48,81</td>
<td>23,71</td>
</tr>
<tr>
<td>F 315,2</td>
<td>68,91</td>
<td>63,82</td>
<td>7,39</td>
<td>33,54</td>
<td>47,45</td>
</tr>
<tr>
<td>F 315,2</td>
<td>68,19</td>
<td>63,27</td>
<td>7,21</td>
<td>34,89</td>
<td>44,85</td>
</tr>
</tbody>
</table>

As it was the case for the beech samples, the mass loss alone can’t clearly indicate what might be the best temperature to degrade the sample’s hemicellulose, but Kučerová et al. (2019) [11] and Senila et al. (2019) [12], independently found, respectively, the values of 20,06% and 27% of hemicelluloses in fir, which tells us that the best temperatures to degrade the hemicelluloses
of fir might be neighboring 300 °C. Unfortunately, there wasn’t time to run the DTG of the fir samples, so the analysis done to the beech samples could not be done to the fir samples.

Conclusions

The results are still not to conclusive on their own, based on mass loss, DTG and literature data it is possible to infer that the best temperature for degrading the hemicelluloses of the beech samples near 275 °C and 280 °C, while for the fir is should be neighboring 300 °C. The next steps in this work will be treating the fir samples at all the temperatures at which the beech samples were treated, including different temperatures if seen fit and the characterization of the wood samples by FT-IR and GC-MS to study the effect of the thermal treatment on the structure of each biopolymer and study what temperatures would be better to degrade the hemicelluloses as much as possible without significantly affecting the cellulose.

References

Panneaux de bois ignifuges sans colle

ANTOUN Karina1,2, EL HAGE Roland2, NAKHL Michel2, SONNIER Rodolphe3, SEGOVIA Cesar4, BROSSE Nicolas1

1 Université de Lorraine, LERMAB, 54000 Nancy, France.
2 LCPM/EDST-PR2N, Université Libanaise, Faculté de Sciences 2, 90656 Fanar, Liban.
3 IMT-Mines Alès, Université de Montpellier, 30319, Alès Cedex, France.
4 Université de Lorraine, Cetelor, 88000 Epinal, France

karina.antoun@univ-lorraine.fr

Mots clefs: bois ; panneaux sans colle ; acide phytique ; ignifugation ; procédé vert.

Contexte et objectifs

Le bois est depuis toujours utilisé dans la construction. Cet usage prend un nouvel essor depuis quelques années grâce aux nombreux produits techniques innovants en bois. Ce matériau est de plus en plus apprécié offrant de nombreuses possibilités pour construire, surélever, rénover et s’agrandir.

Cependant, les révisions successives des réglementations du bâtiment et de la construction ont accru les exigences pour que les matériaux satisfassent aux spécifications en ce qui concerne les faibles émissions de formaldéhyde et la résistance élevée à la propagation de la flamme.

Ainsi, l'industrie des panneaux est confrontée à une demande croissante en panneaux ignifugés et à faible émission de formaldéhyde. Dans ce contexte, la disponibilité de retardateurs de flamme efficaces, non toxiques et/ou biosourcés est activement recherchée.

Néanmoins, la capacité de l'industrie à répondre efficacement à cette demande croissante a été entravée par les limites de la disponibilité d'additifs adéquats. Il est donc clé de pouvoir proposer de nouveaux additifs pour répondre à ces besoins.

Lors de la fabrication des panneaux de particules, les liants comme les urées formaldéhydes, les phénols formaldéhydes et les mélanines isocyanates sont utilisés ; ces colles d’origine pétrolière émettent un taux de formaldéhyde considérable et d’autres gaz à effet de serre (COV…). Ce travail vise la fabrication de panneau par thermo-pressage sans l’utilisation de colle ni traitement chimique.

Par conséquent, l’élaboration d’un panneau de bois sans colle demeure une solution écologique, pourtant, la sécurité incendie des panneaux écologiques en bois est limitée par une faible stabilité thermique lorsqu’ils sont exposés à une flamme, ainsi ils sont désignés comme des matériaux combustibles. Dans ce contexte, une modification de la structure chimique de la lignocellulose par un retardateur de flamme pourrait être envisagée.

Il est connu que l'utilisation de composés à base phosphore améliore l'ignifugation en formant une couche de carbone stable. Un synergisme P-N a été rapporté par Moussa et al., dans lequel une solution d’acide phosphorique et d’urée a été utilisée pour traiter les fibres de chanvre [1]. Cependant, les ignifugeants d’origine biologique sont encore rares.

Dans ce résumé, nous présentons la fabrication de panneaux de bois sans colle traités par un nouveau procédé d’ignifugation utilisant une molécule biosourcée abondante « acide phytique » qui est un co-produit de l’industrie de l’alimentation animale.
L’acide phytique

C’est un agent anti-nutritif qui a un impact négatif sur la qualité des tourteaux pour des applications alimentation animale. Sa structure est constituée de six groupes phosphates offrant des perspectives prometteuses en tant que retardateur de flamme en raison de sa teneur élevée en phosphore et en carbone.

L’acide phytique peut être greffé sur des matériaux cellulosiques et lignocellulosiques (ex. coton, lin, bois, chanvre, etc…) pour leur conférer des propriétés ignifugues.

Matériels et méthodes

Des particules d’épicéa explosées à la vapeur sont utilisées pour produire des panneaux par thermos-pressage (sans utilisation de colle). Ainsi, ces particules sont traitées anti-feu par ignifugation selon un procédé récemment breveté « IGNIBIOS ». Ce procédé consiste à la pulvérisation d’une solution aqueuse d’urée et d’acide phytique sur les particules d’épicéa explosée. Ces particules subissent ensuite un séchage avant la production des panneaux par thermo-pressage pendant 11 min à 200 °C (sans utilisation de colle).

Trois différents panneaux sont préparés : un panneau référence composé de particules d’épicéa non traité (témoin), et deux ignifugés avec deux différentes concentration (traité 1 ; traité 2).

Les propriétés mécaniques (force de liaison interne et flexion) et les tests de gonflement des panneaux sont testés suivant les normes européennes. L’effet du traitement d’ignifugation des panneaux avec la solution ignifugeante est évalué par cône calorimètre.

Résultats et discussion

La garantie de qualité et de performance des panneaux de particules exige de ces derniers des propriétés mécaniques stables et qu’ils soient effectivement conformes aux utilisations auxquelles ils sont destinés. Suivant leur domaine d’application et les conditions spécifiques de leur utilisation, les panneaux de particules doivent donc satisfaire à des exigences mécaniques générales et des exigences spécifiques. Le traitement des particules d’épicéa par la solution ignifugeante (urée/acide phytique) permet la phosphorylation des particules suite au greffage du phosphore, ainsi permettant l’ignifugation du panneau. Le traitement des particules d’épicéa par le retardateur de flamme contribue à une amélioration des propriétés mécaniques des panneaux avec une diminution remarquable du gonflement du panneau de 58% vers 10% et une augmentation de la cohésion interne de 0,05MPa pour le panneau témoin à 0.17-0.18 MPa pour les panneaux traités (Tab. 1).

Tab. 1 : Propriétés mécaniques des panneaux d’épicéa traités

<table>
<thead>
<tr>
<th>Panneau</th>
<th>Phosphore (%)</th>
<th>Densité (kg/m3)</th>
<th>Gonflement (%)</th>
<th>IB (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>0</td>
<td>953</td>
<td>58</td>
<td>0,05</td>
</tr>
<tr>
<td>Traité 1</td>
<td>1,4</td>
<td>940</td>
<td>30</td>
<td>0,17</td>
</tr>
<tr>
<td>Traité 2</td>
<td>3</td>
<td>938</td>
<td>10</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Fig. 1 : Formule de l’acide phytique.
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Fig. 2 : Propriétés mécaniques des panneaux d’épicéa traités

Une amélioration significative du module de flexion (Fig. 2) est remarquée pour les panneaux traités avec une résistance de 3000MPa pour le panneau traité versus 1800MPa pour le panneau témoin. Cependant, une variation aléatoire de la résistance à la flexion est observée pour les panneaux traités.

Les exigences de résistance au feu des matériaux combustibles naturels impliquent la capacité de résister à la flamme tout en limitant sa propagation. La résistance au feu par cône calorimètre est exprimée en fonction du délai d’inflammation (ou temps d’ignition) quand le matériau est exposé à une source de chaleur.

Fig. 3: Evolution du débit calorifique (HRR) en fonction du temps des panneaux d’épicéa.
La figure 3 montre l’évolution des courbes de débit calorifique HRR en fonction du temps pour une irradiance de 35 kW/m² des panneaux d’épicéa traités avec la solution ignifugeante. Il est remarquable que le temps d’ignition augmente après la modification des panneaux avec la solution ignifugeante. Initialement, le temps d’ignition du panneau non modifié à 35 kW/m² est de 66s. Pour un taux de greffage de 1,4%P (traité1) le temps d’ignition augmente significativement (229 s) alors qu’avec un taux de 3% P (traité 2) l’ignition des panneaux est inhibé.

Une vidéo montrant l’effet du traitement d’ignifugation d’un panneau est disponible via le lien suivant https://youtu.be/7Ga8U1qs9-8

Collaborations industrielles
Le procédé d’ignifugation « IGNIBIOS » s’adresser aux marchés dont les matériaux sont de structures lignocellulosiques (ex. panneaux, textile, ...). C’est un traitement efficace, peu onéreux, respectueux de l’environnement, à faible consommation d’énergie, ne nécessite pas l’utilisation de solvants ou de produits chimiques pour le greffage, permet une liaison covalente du retardateur de flamme et peut être facilement industrialisé.

Trois entreprises sont partenaires du projet et impliquées dans à la co-maturation de «IGNIBIOS », les travaux menés actuellement visent à intégrer ce procédé dans leur chaîne de production.

Conclusion et perspectives
Au terme de ce travail, nous avons mis en évidence une méthode efficace pour la production de matériaux lignocellulosiques ignifugés. Un procédé d'explosion à la vapeur a été utilisé pour le raffinage des matériaux lignocellulosiques. De manière inattendue, les panneaux de bois fabriqués des particules d’épicéa explosées à la vapeur et traité par le procédé d’ignifugation, présentaient de propriétés mécaniques améliorées.

Remerciements
Ce travail a été soutenu par le laboratoire de recherche et d’étude sur le matériau bois, LERMAB, à l’Université de Lorraine, par le laboratoire de Chimie-physique des Matériaux et la plateforme de recherche en Nanosciences et Nanotechnologies (EDST-PR2N) à l’Université Libanaise, l’IMT Mines Alès et SATT SAYENS.

Références
Influence de l’effet mécanosorptif sur la fissuration du Padouk

ASSEKO ELLA Martian, GOLI Giacomo, MOUTOU PITTI Rostand, GRIL Joseph, Eric FOURNELY, IKOGOU Samuel, GODI Gaël

Clermont Auvergne Université, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France, martian.asseko_ella@etu.uca.fr

University of Florence, DAGRI-Department of Agriculture, Food, Environment and Forestry, 50145 Firenze, Italia

USTM, Ecole Polytechnique de Masuku, BP 901 Franceville, Gabon

CENAREST, IRT, BP 14070, Libreville, Gabon

Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont Ferrand, France

Mots clés : Fluage ; fissuration ; mécanosorption ; viscoélastique, déformation, teneur en eau

Contexte et objectifs

Le bois, dans son utilisation en structures à long terme ou à court terme, est fortement sollicité par des facteurs environnementaux et mécaniques. Les interactions entre ces sollicitations peuvent fortement modifier le comportement mécanique de ces structures, ce qui complexifie leur mise en œuvre et peut hypothéquer leur durée de vie en service. Très peu d’études existent encore sur le couplage de l’effet de la teneur en eau, des paramètres de fissurations et du fluage dans le bois. Les travaux connus à ce jour dans ce domaine (Hamdi et al., 2018), ont permis d’étudier l’impact du couplage de ces 3 paramètres sur le bois notamment pour des essais de fluage en environnement variable et constant. Leurs travaux ont montré un réel impact en constatant que l’humidification favorisait l’augmentation des déformations tandis que la phase de séchage était propice à l’initiation et à la propagation de fissures (Pambou Nzengui et al., 2019). Ils n’ont toutefois pas permis de bien découpler la contribution de la teneur en eau et des effets mécaniques sur le processus de fissuration. L’objectif de ce travail est donc d’étudier l’influence des effets mécanosorptifs et viscoélastiques sur la fissuration du bois afin de mieux comprendre la contribution de la teneur en eau à la fissuration. Pour cela, nous avons effectué des essais de fluage combiné à la fissuration sur Okoumé, Sapin pectiné et Padouk sous des cycles d’humidité relative contrôlés et à température constante de 20°C. Ce document présente principalement les résultats obtenus sur Padouk.

Matériaux et méthodes

Caractérisation des éprouvettes et choix du taux de déformation

Avant la réalisation des essais nous avons déterminé le module d’élasticité (E) des éprouvettes avec la méthode BING (Brancheriau 2007). Nous avons ensuite calculé les déformations maximales (ε) de la partie la plus sollicitée des éprouvettes, en considérant la flèche mesurée par le transducteur central de l’éprouvette, à partir de données d’essais préliminaires effectués en amont. Les valeurs moyennes des déformations obtenues sur Okoumé, Sapin et Padouk étaient respectivement de 0.35%, 0.31% et de 0.48%. Nous avons choisi le taux de déformation de 0.3% proche de l’essence ayant le taux de déformation le plus bas (le Sapin) avant de calculer les forces F à appliquer sur les éprouvettes, selon l’équation :
Equation 1

\[F = \frac{2H^2 b E e}{3L_{ent}} \]

avec H la hauteur de la poutre, b son épaisseur, L_{ent} l’entraîne.

Le tableau 2 montre les modules d’élasticité et les forces calculées. Les essais ont été réalisés sur l’éprouvette P108.

Table 1. Modules d’élasticité et force appliquées des éprouvettes

<table>
<thead>
<tr>
<th>Éprouvettes</th>
<th>P100</th>
<th>P113</th>
<th>P112</th>
<th>P111</th>
<th>P110</th>
<th>P107</th>
<th>P108</th>
<th>P101</th>
<th>P102</th>
<th>P109</th>
<th>P100</th>
<th>P106</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (MPa)</td>
<td>12661</td>
<td>12661</td>
<td>15597</td>
<td>14515</td>
<td>12589</td>
<td>11490</td>
<td>13890</td>
<td>12409</td>
<td>11360</td>
<td>14098</td>
<td>15328</td>
<td>14880</td>
</tr>
<tr>
<td>Force (N)</td>
<td>172</td>
<td>172</td>
<td>212</td>
<td>197</td>
<td>171</td>
<td>156</td>
<td>189</td>
<td>197</td>
<td>154</td>
<td>143</td>
<td>191</td>
<td>208</td>
</tr>
</tbody>
</table>

Etude expérimentale

Nous avons effectué des essais de fluage en flexion 3 points sur des poutrelles entaillées (Fig.1a). Les éprouvettes sont de dimensions 160x12x6 mm et sont testées dans le sens \(L \). La distance entre appuis est de 140mm. Au niveau des deux extrémités des poutres (A) et (B), nous avons effectué des entailles de longueur \(L_r \) de 20 mm et de hauteur \(h_R \) de 6mm correspondant à la moitié de la hauteur de la poutrelle. Nous avons également initié une longueur de fissure \(a_0 \) de 2mm et une ouverture de fissure \(O_c \) de 0.3mm avec une lame de cutteur pour faciliter la propagation de la fissure.

![Fig. 1: Matériels utilisés (a) ; Géométrie des poutres testées (b) dispositif expérimental (c) ; microscope](image)

La distance entre l’appui et le fond d’entaille de la poutre (I) est de10 mm. Chaque extrémité de la poutre est graduée en mm et marquée par deux traits verticaux (d5d6) et (d1c2) distants de 10 mm (c1 c2); ces deux droites nous permettent de calibrer horizontalement les dimensions réelles de l’image en fonction du grandissement de l’image donnée par le microscope. L’estimation de l’ouverture de la fissure se fait en mesurant la variation de la distance (d1d2) proche du droit de l’entaille. L’ensemble du dispositif est composé de 3 bancs d'essai de fluage en flexion 3 points (Fig.1b). Chaque banc est composé de 3 transducteurs,
deux aux extrémités et un au centre. Les transducteurs latéraux (T_L, T_R), placés à 20 mm de l’extrémité de l’éprouvette, permettent d’estimer le retrait et le gonflement transversal le long de la hauteur de l’échantillon et de corriger la flèche centrale mesurée par les transducteurs centraux (T_C). Les bancs sont placés dans une boîte hermétiquement fermée par une fenêtre transparente, de dimension 750x450x450mm et équipée de deux capteurs pour le contrôle de la température (T) et de l’humidité relative (HR). Le suivi de la fissure s’est fait avec un microscope USB (Fig.1c) depuis la face extérieure de la boîte. Le contrôle (T, HR) se fait au moyen d’une pompe diffusant l’humidité régulée dans la boîte par un tuyau. Dans la boîte, nous avons également placé 5 éprouvettes témoins de chaque espèce de même taille afin d’estimer leur teneur en humidité (MC) par un suivi de masse. La boîte dispose également des trous sur chaque face (Fig.1d) pour la prise d’image au microscope (Fig.1e). Les éprouvettes testées ont été chargées à l’état humide sous contrainte constante sous un cycle hydrique de 45 à 75% HR.

Résultats et discussion

Dans cette partie nous montrons l’effet du comportement mécanosorptif et viscoélastique sur la fissuration de l’éprouvette de Padouk (Fig.2a). Parallèlement, nous présentons l’évolution de la teneur en eau des poutres témoins (Fig.2c et Fig.2d) et la contrainte appliquée (Fig.2e et Fig.2f).

La Fig. 2c montre la propagation de la fissure sous les effets du comportement viscoélastique et mécanosorptif de l’éprouvette du Padouk pour un cycle de sorption. Ce cycle de sorption est composé d’une phase d’humidification à 75% HR de 3,5 jours, d’une phase de séchage à 45% HR de 4,5 jours et d’une phase de réhumidification à 75% HR de 3 jours. Les déformations viscoélastiques et mécanosorptives ont été calculées par l’équation (2) suivante.
\[\epsilon_{\text{ent}} = 2 \cdot 3 \cdot h \cdot (V_o - V_a) \cdot (l_{\text{ent}}^2)/[(1 - \varphi) \cdot (1 + 7 \cdot \lambda^3)] \]
Equation 2

avec \(\varphi = V_a/V_0 \) et \(\lambda = 2l/L_{\text{ent}} \)

\(\varphi \) est un paramètre correctif des effets mécaniques sur les mesures des transducteurs des côtés par rapport aux traducteurs centraux, il est déterminé expérimentalement aux premiers instants du chargement. \(V_a \) est la moyenne des flèches mesurées par les transducteurs des côtés et \(V_o \) est la flèche au centre mesurée par le transducteur central. On remarque que la fissure a tendance à évoluer majoritairement sur un côté de la poutre pendant qu’elle reste quasi-constante sur le côté opposé. Après le chargement le bois présente un comportement viscoélastique. Durant cette phase la longueur et l’ouverture de fissure restent presque constante ; en revanche après le premier séchage le bois présente un comportement mécanosorptif, la longueur et l’ouverture de fissure ont tendance à augmenter jusqu’à la rupture de la poutre. Sur la Fig.2b on peut voir les photos d’une éprouvette de Padouk avant et après le chargement et avant la rupture. Ce constat montre que le séchage favorise la propagation des fissures contrairement à l’humidification où il n’y a pas fissuration. Les ouvertures de fissure observées au début de l’essai sont dues au chargement instantané.

Remerciements

Les auteurs remercient les universités de Florence et de Clermont-Ferrand, pour l’accueil et le financement de la mobilité internationale via le programme CAP 20-25 WOW !

Références

Navigation autonome d’un robot forestier équipé d’un laser à balayage

BEN ABDALLAH Fida¹, BOUALI Anis¹, MEAUSOONE Pierre-Jean¹

¹Université Lorraine, Laboratoire LERMAB, 27 rue Philippe Seguin, 88026 Epinal, France
fida.ben-abdallah@univ-lorraine.fr

Résumé
Cet article s’inscrit dans le cadre de travaux de recherche menés dans un projet « Plantation Innovante en Forêt » en cours de réalisation. Ce travail concerne l’automatisation et la robotisation des tâches d’entretien pour les plantations de peuplier. La destruction de la végétation concurrente au pied des peupliers est une méthode permettant d’améliorer les rendements et la qualité de ces sylvicultures. Les solutions classiques basées sur des traitements chimiques et l’utilisation de produits phytosanitaires ne sont pas viables à long terme. Le traitement mécanique manuel est quant à lui un travail pénible et onéreux. L’objectif de ce projet est de démontrer qu’il est possible de faire appel à la robotique mobile pour la réalisation de telles tâches. A cette étape, nous nous concentrons sur l’une des fonctionnalités principales : la navigation autonome, qui consiste à détecter et à se déplacer en toute sécurité dans un environnement forestier assez complexe.

Mots clefs : robot mobile ; navigation autonome ; milieu forestier ; évitement des obstacles

1. Introduction

Notre robot forestier devra se déplacer entre les rangées, détecter les arbres à entretenir et désherber au pied des plants, voire même effectuer d’autres tâches telles que la détection des parasites, le travail local du sol ou l’inspection. Pour y parvenir, une solution envisageable passer par la construction d’une carte de l’environnement. Cette carte sera utile pour localiser le robot, et planifier le mouvement et de suivre le chemin, tout en accomplissant des tâches spécifiques [2]. Cette démarche permettra de tester et évaluer la performance des algorithmes de contrôle, de localisation et de cartographie du robot mobile, déjà utilisés dans des environnements structurés, puis les adapter au milieu forestier, Notre objectif est de préciser les stratégies de contrôle et les méthodes de calcul adéquates au milieu forestier.

Dans ce contexte, plusieurs travaux de recherches s’intéressent à la navigation autonome d’un robot mobile dans un environnement agricole structuré. Cependant, le milieu forestier présente un défi majeur pour la navigation autonome. Premièrement, la fusion des données de l’odomètre et la centrale inertielle n’est pas une solution fiable pour la localisation du robot [3]. En effet l’étendue boisée de la forêt entraîne des erreurs accumulées ayant un effet sensible dans le positionnement et la localisation du robot mobile. De plus, le terrain irrégulier peut causer un dérapage du véhicule. Deuxièmement, Il est important de rappeler que l’utilisation d’un GPS RTK, souvent utilisé dans les cultures de plein champs, ne permet pas de localiser le robot [4]. Dans la forêt, le GPS présente plusieurs inconvénients : (i) le GPS
dépend de la couverture satellite, qui se dégrade au niveau du sol à cause de la canopée des arbres. (ii) l’utilisation du GPS seul ne permet pas d’estimer l’orientation du robot et nécessite un capteur supplémentaire telle qu’une centrale inertielle.
Dans cette étude, nous avons équipé le robot par un Lidar, utilisé pour corriger la position du robot donnée par l’odomètre. Les scans lasers fournis par le Lidar permettent la perception de l’environnement. En forsterie, le Lidar est souvent utilisé pour déterminer les propriétés de base et les paramètres structurels des forêts tels que la densité du nombre de tiges, la reconstruction 3D de la forêt et l’inventaire forestier en particulier l’estimation de la répartition de la biomasse. Moins de travaux de recherche ont été développées en planification du chemin et en contrôle de mouvement du robot mobile.
La perception d’une part et la commande d’autre part sont les deux thèmes majeurs de recherche pour obtenir un robot mobile parfaitement autonome. Dans ce document, on s’intéresse tout d’abord à la navigation autonome et les étapes de sa résolution. Ensuite, on présente le robot mobile et le middleware utilisés pour valider la solution proposée.

2. Navigation Autonome

La navigation autonome est un problème fondamental dans la robotique mobile. Dans ce contexte, on cherche à doter le robot d’algorithmes et de méthodes lui permettant d’évoluer dans un environnement complexe et dynamique, en toute sécurité et en parfaite autonomie. La navigation repose sur quatre éléments constitutifs : cartographie, localisation, planification de chemin et le contrôle du mouvement.

2.1. Construire la carte

Le problème de cartographie consiste à déterminer la carte d’un environnement à partir de la position exacte du robot et des données capteurs. Dans la plupart des cas, ces données sont insuffisantes, puisque l’environnement change au cours du temps et sa dynamique peut évoluer rapidement.

2.2. Se Localiser

Le robot détermine sa position et son orientation par rapport à sa carte de navigation déjà connue. Les systèmes de localisation actuels combinent (i) des capteurs de localisation à l’estime (comme des centrales inertielles et des systèmes odométriques à roues ou basés vision), (ii) des capteurs de localisation absolue comme des récepteurs GNSS avec des antennes de qualité et (iii) des caméras et des Lidars capables de mesurer des angles et des distances sur des amers géo référencés.

2.3. Planifier le chemin

Pour atteindre la destination finale désirée, le robot traduit la connaissance de son environnement en un ensemble de contraintes et détermine le chemin optimal en évitant les obstacles. Pour permettre une exploration plus stratégique, le problème est donc traité en deux étapes: discrétiser l’espace sous forme d’un graphe puis explorer ce graphe pour trouver le chemin optimal.

2.4. Suivre le chemin

La commande du robot s’effectue généralement en deux parties séparée :
— Le contrôle latéral calcul l’angle de braquage des roues directrices et ainsi l’angle au volant pour suivre le chemin.
— Le contrôle longitudinal a pour objectif de suivre le profil de vitesse le long du chemin de consigne. Il détermine les couples de freinage et de traction des roues motrices.
3. Matériel et Middleware

3.1. Robot Mobile

Le robot mobile Husky A200 a été développé par Clearpath pour être performant même dans des conditions difficiles [8]. Notre choix d’utiliser le robot Husky est justifié par : i) sa capacité à s’interfacer avec de nombreux manipulateurs de type industriel, ii) la prise en charge dans ROS (Robot Operating System) et l’utilisation d’un protocole série open source.

3.2. Middleware de Robotique

Le rôle principale d’un middleware robotique est de faire fonctionner en parallèle un grand nombre d’exécutables qui doivent pouvoir échanger de l’information de manière synchrone ou asynchrone. ROS (Robot Operating System) est le middleware utilisé dans cet article [9]. Un système ROS est un graphe composé d’un ensemble de noeuds (une instance d’un exécutable) qui communiquent entre eux à travers des messages par le Master. Ces messages sont échangés avec le mécanisme Publish/Subscribe de manière asynchrone à travers un bus de communication appelé topic ou synchrone via les services. Dans notre étude, slam-gmapping et le move-base sont les deux nœuds principalement utilisés pour se naviguer. ROS fournit un ensemble de librairies et d’outils qui permettent de déployer des applications à travers les notions de package et de stack.

3.3. Simulation et Résultats

Pour la navigation autonome du robot husky dans la forêt, nous avons utilisé un planificateur global pour obtenir le chemin global à partir de la position actuelle du robot, la cible et une cartographie. Les données du télémètre laser et l’odométrie sont utilisées pour créer une carte des coûts locaux. Pour construire la cartographie de la forêt, nous avons utilisé le processus SLAM (Simultaneous Localization And Mapping) [10]. Cet algorithme basé sur différents capteurs permet au robot de cartographier son environnement tout en se localisant dans la carte établie. Le problème du SLAM est double: un robot a besoin de connaître sa position pour pouvoir cartographier un environnement. D’un autre côté, il doit absolument disposer d’une carte préétablie de son environnement pour pouvoir s’y localiser.

Fig. 2 : Visualisation d’une plantation des peupliers sur Gazebo

Fig. 3 : Visualisation de la détection télémètre laser 2D des troncs d’arbre d’une plantation des peupliers sur Rviz

L’utilisation d’un filtre de KALMAN étendu au cœur du processus SLAM [11](voir figures n°2 et 3) aboutit à des cartographies tel que les figures ci-dessus.
4. Conclusion

Le milieu forestier, assez complexe, présente un défi majeur pour la navigation autonome. En effet, sans informations suffisantes sur la position du robot (localisation) et sur la nature de son environnement (cartographie), le robot Husky ne peut pas se déplacer en toute sécurité et en parfaite autonomie. Dans ce contexte, la technique du SLAM est utilisée pour la localisation ainsi que pour la cartographie. Afin de valider l'approche proposée, une simulation sur ROS est présentée en utilisant le robot Husky dans une plantation de peupliers.

Références
Étude des colophanes de la résine de pin issus de gemmes différentes

Arsène Bikoro, Morandise Rubini, Bertrand Charrier

University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical and Physicochemical Sciences for the Environment and Materials (IPREM-UMR 5254), 403 Rue de Saint Pierre, 40004, Mont de Marsan, France.

arsenebikoro1@yahoo.com

Mots clefs : Colophane ; Hugues ; BoreHole ; BioGemme ; TMA ; Indice de saponification, GC-FID ; *Pinus*.

Contexte et Objectifs

Le marché des résines n’est pas figé dans le temps et encore plus avec la crise sanitaire actuelle. En effet, nous observons une augmentation de la demande mondiale (avec une augmentation du prix de la tonne avoisinant les 2500USS) et la première production mondiale qui est la Chine réduit de plus en plus ses exportations de résine vers l’Europe. Les résines utilisées dans la production des produits renouvelables des pays développés. Les résine de colophane de gemme représente environ 30% de la production mondiale de résine. En France, les résines collectées en vase close méritent d’être valorisées.

Ainsi, cette étude nous permet de faire une première évaluation sur quelques qualités des colophanes issues de techniques de gemmage différentes et provenant de la France, du Brésil, de l’Espagne et de l’Espagne. Pour cela, des analyses chimiques et de physico-chimie ont été réalisées sur des colophanes.

Matériaux et méthodes

Echantillonnage

Les échantillons de colophanes analysés provenaient de gemmes Hugues, BioGemme et BoreHole. Ils étaient au total 254 échantillons dont les proportions sont représentées sur la Fig. 1 ci-dessous.

![Diagramme de secteurs montrant les proportions de provenance des échantillons](image.png)

Fig. 1 : proportion quantitative des échantillons en fonction de la région de provenance.

Analyse chimiques
Une analyse par Chromatographie en Phase Gazeuse (GC-FID) a été réalisée. Le but étant d’identifier les différents composés présents dans la colophane analysées afin d’en ressortir des spécificités (molécules marqueurs) selon le type de gemmage utilisé. Aussi une analyse des impuretés insolubles (selon les conditions de la norme ISO 3596 :2000) et l’étude des indices acides et de saponifications ont été réalisés.

Analyse GC : l’équipement de type GC-Clarus 500 (Perkin Elmer) a été utilisé : la colophane obtenue par évaporation d’essence de térébenthine est directement analysée comme suite : 10 mg de colophane sont dissous dans 1 ml de solution Hexane/acétate d’éthyle (50/50 : V/V). La solution est injectée dans la GC une température de 250°C. Le gradient de température se situe entre 50 et 320°C et le gaz vecteur était l’hydrogène.

Mesure des impuretés insolubles : on pèse 0,40g de colophane dans laquelle on met de l’hexane en excès. Au bout de 15 min, la solution trouble est filtrée et la colophane non solubilisée est séchée pendant 30 secondes à 100°C puis on effectue une prise de masse insolubles.

Mesure de l’indice de saponification : la mesure se fait en deux étapes.

Un test à blanc (60 min) est réalisé. 25 ml de solution éthanolique/KOH (0,5 N) et ajouté dans un ballon vide de 250 ml. Ensuite l’ensemble est porté à reflux. Une fois les 60 min écoulées, une solution de 0,5 à 1 ml de phénolphtaléine (2 à 3 gouttes) est ajoutée au mélange puis s’en suit un titrage à l’acide chlorhydryque (0,5 N). Au changement de coloration, on note le volume Vo.

Un test avec la colophane (60 min) est réalisé. 25 ml de solution éthanolique/KOH (c = 0,5 N) + m = 2g de colophane (IS entre 150 et 200 mg de KOH/g de corps gras) sont introduits dans un ballon de 250 ml. L’ensemble est porté à reflux. Le temps écoulé, une solution de 0,5 à 1 ml de phénolphtaléine (2 à 3 gouttes) est ajouté et l’ensemble est titré par une solution d’acide chlorhydryque à une concentration c égale à 0,5N. Au virage à l’incolore de la phénolphtaléine, on note le volume V1.

L’indice de saponification est calculé selon la formule suivante :

\[Is = \frac{(V0 - V1) * c * 56.1}{m} \]

Analyse thermomécanique : l’analyse est réalisée avec une TMA/SDTA840, METTLER TOLEDO. Les colophanes utilisées étaient de préparées de façon à avoir un échantillon d’épaisseur de 5 mm, d’une largeur inférieure à 10 mm et une longueur inférieure à 14 mm. L’échantillon est placé dans un four et grâce à une sonde, on applique une force constante de 0,02N pendant 14 min. Le gradient de température est de 25°C à 55°C.

Résultats et discussion

Les premiers résultats concernant le point de ramollissement des colophanes (Fig. 3) montre une grande dispersion avec des écarts élevés des échantillons provenant des gemmes Hugues du Brésil, de la France et du Portugal. La plus grande dispersion est observée au niveau de celles de la France avec une moyenne autour de 35°C. Les gemmes BoreHole et BioGemme restent plutôt homogènes avec des valeurs comprises entre 45°C et 50°C.
Fig. 3 : distribution du point de ramollissement des échantillons issus de gemmes Hugues, BioGemme et BoreHole en fonction de la provenance géographique.

En ce qui concerne les résultats sur les indices de saponification, les gemmes Hugues du Portugal sont celles avec un indice plus important (185-190 mg de KOH/g de corps gras). Mais celles provenant du Brésil, de la France et de l’Espagne ont aussi des indices supérieurs aux gemmes BoreHole et BioGemme (France). Cependant, le nombre d’échantillons pas assez élevé des gemmes Hugues du Portugal (≈ 3%), de l’Espagne (≈ 9%) et du Brésil (≈ 11%), ne permet pas d’éliminer les écarts importants au sein des même gemmes. Pour les présents résultats, les gemmes issus de la France semblent présenter le moins d’écart entre les échantillons mais ont des indices relativement inférieurs aux gemmes étrangères.

L’analyse par Chromatographie en phase gazeuse a permis d’identifier environ une quarantaine de molécules aux niveaux des différentes gemmes. Une certaine similarité moléculaire a été observée sur les molécules des gemmes BoreHole et BioGemme (Fig. 4). Certaines molécules apparaissent comme étant discriminantes au type de gemmage. Pour les gemmes BioGemme par exemplaires, nous avons spécifiquement les molécules suivantes : caryophyllène oxide et le bifomène. Pour la méthode BoreHole, les molécules suivantes sont discriminantes : podocarp-7-en-3-one et le 13β-methyl-13-vinyl. En fin pour la méthode Hugues, nous avons par exemple : β-Pinène, Limonène et l’humulène.
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Fig. 4 : Analyse en composantes principales des molécules identifiées dans les gemmes Hugues, BioGemme et BoreHole.

Des analyses complémentaires sont en cours de réalisation afin de ressortir une spécificité moléculaire de chaque type de gemme en ce qui concerne la colophane.

Conclusion

Les analyses de mesure du comportement thermomécanique des colophanes issues de gemmes différentes ont montré qu’il n’avait pas de véritables différences significatives sur le point de ramollissement des échantillons. La mesure des points des indices de saponification semble indiquer que les colophanes Hugues subissent moins de modification chimique (oxydation, isomérisation) des acides résinique lors de l’évaporation de l’essence de térébenthine à 150°C. Une certaine spécificité moléculaire semble se dégager en fonction du type de gemmage. Les gemmes BioGemme et BoreHole ont des molécules communes. L’analyse a été faite avec un échantillonnage pas équilibré (77% de gemmes sont Française) lié à la difficulté d’avoir accès aux gemmes étrangères. Toutefois, cette étude fournit des informations importantes sur la qualité des résines.

Remerciements

Références

WOod OPtical Scope (WoOpS)

Détermination des propriétés du bois par interaction lumineuse
interprétation, mesure et identification des mécanismes et des paramètres
d'influence

BOIVIN Juliette¹, GIRARDON Stéphane¹, DENAUD Louis¹, ROUX Benjamin¹,
TEYSSIEUX Damien², FROEHLY Luc²

¹Arts et Metiers Institute of Technology, LABOMAP, Université Bourgogne Franche-Comté,
HESAM Université, F-71250 Cluny, France
²Franche-Comté Electronique Mécanique Thermique et Optique – Sciences et Technologies
(FEMTO – ST) – UMR 6174
Juliette.boivin@ensam.eu

Mots clefs : Traitement d’images ; effet trachéide ; lumière ; optique

Contexte

Le bois sera l’un des matériaux de construction de base du 21ème siècle. Ses propriétés
de légèreté, de rigidité, d'isolation et sa capacité à capturer le carbone font de lui un matériau
incontournable dans le contexte actuel, où les préoccupations écologiques sont omniprésentes.

Une de ses particularités réside dans sa structure multi-échelle complexe et hétérogène qui
résulte de la croissance adaptative et singulière d’un arbre dans son environnement (Figure 1).
Comme toute ressource issue du vivant, sa variabilité naturelle est très forte et représente un
enjeu essentiel dans sa valorisation comme matériau de construction, d'emballage ou
d’aménagement intérieur ou extérieur. Les pays nordiques, aidés par l'homogénéité de leur
ressource forestière, ont su industrialiser sa transformation et inonder le marché français si bien
que près d’une planche sur deux mise en œuvre sur notre territoire est
importée.

Le principal frein à l’utilisation de bois local dans la construction réside dans la difficulté à
prédire ses propriétés mécaniques du fait de son hétérogénéité intrinsèque plus forte que celle
des bois du nord. En particulier, la construction à partir de bois feuillus, qui représentent les 2/3
de notre ressource, est aujourd'hui freinée par la complexité à modéliser leur comportement
mécanique.

Le premier paramètre d'hétérogénéité du bois réside dans l'orientation de ses fibres, qui
gouverne ses propriétés mécaniques et physiques. La connaissance de cette orientation pour un
placage ou un sciage peut améliorer son usage. Aujourd'hui, cette mesure peut être réalisée par
des techniques laser et l'effet trachéide : lorsqu'un point laser rouge est appliqué sur une surface
de bois, la lumière se distord et une ellipse est observée chez les résineux dont le grand axe suit
les fibres. Ce phénomène, peu coûteux à instrumenter, peut être utilisé pour développer des
modèles de comportement mécanique et de séchage. La plupart des auteurs se contente de
l'utiliser et personne n’a véritablement publié sur le potentiel réel de l'exploitation de cet effet
qui est considérable pour valoriser les bois locaux riches en nœuds.
Objectifs

Plusieurs systèmes de classement mécaniques industriels des bois de résineux reposent sur le principe d’« effet trachéide ». Pourtant, les différents travaux menés n’expliquent pas précisément les mécanismes sous-jacents et les causes de ce phénomène. L’effet trachéide est très marqué pour certaines essences (surtout résineuses) et quasi inexistant pour d’autres (plutôt feuillues). A l’issue d’essais préliminaires sur plusieurs essences, il apparaît que différents paramètres de la lumière incidente peuvent avoir une forte influence sur le phénomène de diffusion. Ces différents paramètres sont la longueur d’onde (l’absorption semble, comme dans les tissus biologiques, dépendante de la longueur d’onde avec une fenêtre de transmission dans le rouge) (figure 2), la polarisation (l’aspect orienté des fibres peut laisser penser qu’il existe une anisotropie structurelle du bois qui peut également dépendre de l’humidité de celui-ci), la structuration de la lumière incidente (illumination ponctuelle ou ligne ou autre qui permet d’avoir une mesure plus locale des propriétés ou au contraire de moyennir les effets).

Les mesures peuvent être faites en transmission ou en réflexion et il est alors probable que les résultats obtenus soient sensiblement différents et renseignent sur un aspect plus volumique de la structure étudiée (pour la mesure en transmission) alors que pour les mesures en réflexion la
mesure est moins pénétrante. Nous pourrons ainsi établir, pour les principales essences de bois locales (Douglas, Chêne et Hêtre), les paramètres de mesures pour évaluer plusieurs propriétés physiques et mécaniques.

La connaissance de ces informations permettant de classer beaucoup plus en amont dans le procès les produits va améliorer la compétitivité des entreprises locales mais aussi l’utilisation de la ressource elle-même.

Matériel & Méthode

S’agissant d’un problématique pluridisciplinaire nécessitant une expertise sur le matériau et son comportement physique mais aussi sur la mesure optique par laser, nous avons constitué une équipe associant ces deux compétences entre le LaBoMaP et FEMTO-ST. Des essais préliminaires très encourageants réalisés sur les moyens du plateau de mesure optique de FEMTO à Besançon à partir de placages de feuillus déroulés au LaBoMaP nous ont confortés dans la stratégie. Cette association est nouvelle et peut constituer la base d’une collaboration structurante vers un moyen de mesure à fort potentiel (mesure locale de l’humidité, la densité, l’état sanitaire, la présence de bois de réaction, la détection d’extractible, …).

Le LaBoMaP dispose d’une ligne de déroulage complète et instrumentée tandis que FEMTO-ST possède plusieurs dispositifs optiques permettant de sélectionner les technologies et les longueurs d’ondes les mieux adaptées pour répondre à notre problématique.

Perspectives

L’objectif du projet est de déterminer et d’expliquer les facteurs influençant l’effet trachéide pour une mesure fiable et reproductible des propriétés physiques et mécaniques du matériau bois. La compréhension des paramètres d’influence peut permettre de mieux utiliser les informations exploitables de cette mesure et à terme de mieux caractériser la ressource locale.

Cette connaissance plus fine et plus en amont dans les procédés de transformation des propriétés du bois permettra aux industriels d’optimiser leur rendement, de mieux utiliser la ressource et de gagner en compétitivité même avec une ressource locale.

Un des résultats sera la création d’une base de données qui servira de référence aux futurs projets d’étude, suivant les propriétés à mesurer sur telle ou telle essence de bois pour le développement d’appareillages de mesure optimisés.

Remerciements

Ce travail est soutenu par la région Bourgogne Franche-Comté et par l’ANR (projet TreeTrace ANR-17-CE10-0016-03).
Evaluation de l’impact des entailles de poutres de sapin pectiné (*Abies alba*) sur les interprétations des essais Bing

BONTEMPS Arthur¹, GRANET Charles-Hubert¹, SALLAT Theo¹, GODI Gaël¹, MOUTOU PITTI Rostand²,³, FOURNELY Eric¹, GRIL Joseph¹

¹Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 CLERMONT-FERRAND, FRANCE
²CENAREEST, IRT, BP 14070, Libreville, GB

arthur.bontemps@uca.fr

Mots clefs : Poutres entaillées ; essais Bing ; sapin pectiné

Contexte et objectif

Une campagne expérimentale sur le sapin pectiné (*Abies alba*) est en cours. Le but est de caractériser le comportement mécanique du sapin partiellement séché, en plus de proposer une description précise d’essais complexes à l’échelle d’un élément de structure. Notamment, le cœur de la campagne consiste en des essais de fluage sur des poutres entaillées en environnement extérieur semi-abrité. Cette description représentera un jeu de données expérimentales permettant de confronter de futurs modèles numériques. La méthode Bing a été utilisée pour la caractérisation mécanique du lot de poutre. En associant les modules élastiques à des mesures d’infradensité, une classification mécanique a pu être réalisée. Néanmoins, une fois entaillées, les poutres n’ont plus une section constante et les mesures Bing ne peuvent théoriquement plus être appliquées. Ce papier montre les résultats des essais qui ont été menés pour évaluer l’impact des entailles sur une mesure Bing.

Matériel et méthode

Matériel végétal étudié

La scierie du Forez a fourni un lot de 30 poutres de sapins locaux le 8 avril 2021, classées C18. Elles avaient subi un traitement de surface au Wolsit EC 100 FP2 leur donnant un aspect jaunâtre et garantissant la protection contre les termites et autres insectes xylophages pendant au moins 10 ans. Ces dernières sont en dimensions d’emploi : 4000x175x63 mm³. Les dimensions de la poutre sont présentées en Fig. 1.

![Choc latéral](image)

Fig. 1 : Dimensions des poutres étudiées (mm)

La méthode Bing

La méthode Bing est un essai en vibration libre permettant d’estimer la rigidité longitudinal, le coefficient de cisaillement et le frottement interne d’une poutre. Le principe est de faire vibrer la poutre par un choc sur une de ses extrémités (Cirad, 2021). L’onde provoquée par l’impact peut se propager en compression (choc longitudinal) ou en flexion (choc latéral), Fig. 1.
Dans le cadre de cette étude, chaque poutre était installée sur deux chambres à air de vélo au quart et au trois quarts de la longueur, puis était frappée par un maillet, les chambres à air de vélo faisant office d’appuis libres (Fig. 2a). L’acquisition du signal était réalisée par un microphone et un PicoScope 4224 IEPE conformément au protocole (Cirad, 2020) (Fig. 2b).

Les fréquences propres acquises par le micro et le PicoScope sont absolues. Cependant, lors des calculs effectués par le Bing, le logiciel fait les hypothèses suivantes (Brancheriau, 2002) :

- L’élément étudié est élancé, idéalement d’un élancement entre 10 et 40 : \(\frac{L}{h} < 40 \)
- sa section est constante ;
- il est supposé obéir au modèle de Timoshenko ou de Bernoulli ;
- il est homogène, donc pas de nœuds, de pentes de fil ou de poches d’eau ;
- les effets poisson en compression sont négligés ;
- l’influence des supports élastiques est négligée.

Dans le cas du matériau végétal étudié, l’hypothèse la plus problématique est celle d’homogénéité. En effet, pour des poutres en dimensions d’emploi, les hétérogénéités sont nombreuses et inévitables. Elle se traduit notamment par des déviations locales de l’angle de fil (nœuds, orientation du fil par rapport au débit…).

Mesure de l’impact des entailles sur les résultats d’une mesure Bing

Dans le but de quantifier expérimentalement l’impact des entailles sur une mesure de Bing, le protocole a été de tester une poutre à plusieurs longueurs d’entaille : 10, 20, 30, 40 et 43 cm. C’est la poutre S01. Ensuite, 8 poutres sont passées au Bing successivement sans entaille puis
entaillées de 43 cm de chaque côté (Fig. 3). Ce sont les poutres S05, S06, S27, S24, S29, S18, S09.

Fig. 3 : Dimensions en mm d’une poutre à entaillée

Résultats et discussion

Lors d’une mesure Bing sur une poutre entaillée, les résultats des modules élastiques augmentent par rapport à ceux sur la poutre non entaillée. Il est alors intéressant de calculer une « longueur équivalente », c’est-à-dire la longueur qu’aurait la poutre pour reproduire le module élastique mesuré sans entaille. Ces longueurs ont pu être calculées par les formules reliant module élastique et fréquence propres issues de (Brancheriau, 2002). En Fig. 4 sont donc représentées les longueurs équivalentes calculées en fonction de la longueur d’entaille. L’ordonnée à l’origine correspond à la longueur réelle de la poutre. Les équations affichées et encadrées sont celles ayant le plus fort et le plus faible coefficient directeur (Fig. 4a, b). Le coefficient R² est affiché pour la poutre S01 sur laquelle il y a des mesures à plusieurs longueurs d’entaille.

Fig. 4 : Evolution de la longueur équivalente en fonction de la longueur d’entaille (a) en propagation de flexion et (b) en propagation de compression, (c) évolution des 4 premières fréquences propres de flexion pour la poutre S01
Une mesure Bing sur une poutre entaillée se passe comme-ci la poutre était plus courte qu’elle ne l’est en réalité. Pour 43 cm d’entaille, la longueur équivalente est entre 27 et 34 cm plus courte pour la flexion et entre 37 et 45 cm plus courte pour la compression. On constate qu’en compression, le Bing agit comme-ci une poutre entaillée de 43 cm de chaque côté était une poutre non entaillée mais d’environ 43 cm plus courte. La Fig. 4 montre également que :
- Le coefficient R² pour la poutre S01 est meilleur en compression qu’en flexion ;
- pour les poutres non entaillées, les quatre premières fréquences propres en flexion sont systématiquement identifiées. A mesure que la longueur d’entaille augmente, les pics des fréquences propres 3 et 4 disparaissent du signal.

Également, la 2ème fréquence propre en flexion semble légèrement plus impactée que la première, comme montré dans le tableau 1.

Tab. 1 : Écart des fréquences propres entre la mesure avant entaille et la mesure après 43 cm d’entaille sur les 9 échantillons

<table>
<thead>
<tr>
<th>Écart fréquence propre 1</th>
<th>Écart fréquence propre 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>7,87</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>0,673</td>
</tr>
<tr>
<td></td>
<td>7,00</td>
</tr>
<tr>
<td></td>
<td>1,459</td>
</tr>
</tbody>
</table>

Conclusion et perspectives

Ces premiers résultats semblent indiquer que dans une analyse vibratoire, entailler une poutre équivaut à la raccourcir. On constate une bonne corrélation entre ce raccourcissement et la longueur d’entaille. Cependant, seulement la première fréquence propre de flexion d’une poutre entaillée est fiable. Sur la base d’un nombre suffisamment important de mesures, un facteur de correction du module élastique apparent, mesuré sur une poutre entaillée, pourrait être estimé. Pour confirmer cette hypothèse, une analyse éléments finis sur Cast3m est prévue. En appliquant une analyse modale sur un modèle de poutre à différentes longueurs d’entaille, des écarts similaires devraient être trouvés.

Il ressort de cette étude que réaliser des mesures de module élastique par la méthode Bing sur des poutres entaillées semble réalisable. Une correction empirique sera alors apportée à la valeur renvoyée, prenant correctement en compte les incertitudes.

Remerciements

Les auteurs remercient la Région Auvergne Rhône Alpes pour le financement de la thèse via le CPER ainsi que l’UCA pour le chèque recherche innovation du programme Hub Innovergne du CAP 20-25.

Références

Brancheriau L. (2002) Expertise mécanique des sciages par analyse des vibrations dans le domaine acoustique, Université Aix Marseille II.

Cirad (2021) Principe de mesure : la méthode BING.

Mécano-biologie du cambium : influence des interactions mécaniques entre bois et écorce sur la formation du bois

Thomas Boursat, Tancrède Alméras, Yann Boursiac, Bruno Clair
thomas.boursat@umontpellier.fr, tancrède.almeras@umontpellier.fr, yann.boursiac@inrae.fr, Bruno.clair@cnrs.fr

Mots-clés : cambium ; croissance secondaire ; xylème ; phloème ; potentiel hydrique ; propriétés mécaniques ; biomécanique

Contexte, enjeux

La croissance des plantes peut se décomposer en une croissance primaire et secondaire, cette dernière étant quantitativement très importante chez les plantes arborescentes. Dans l’état des connaissances actuelles, la croissance primaire a été beaucoup mieux décrite. Certains mécanismes élémentaires sont bien connus. Pour que celle-ci s’opère, les cellules végétales doivent être turgescentes, c’est-à-dire qu’une différence de potentiel hydrique entraîne l’eau à l’intérieur de la cellule et voit sa membrane plasmique exercer une pression contre la paroi cellulaire. L’auxine, une hormone de croissance, déclenche une série de réactions qui amène à l’activation d’enzymes pariétales qui vont relaxer, c’est-à-dire baisser la limite d’élasticité de la paroi cellulaire. Ceci aura pour conséquence une déformation plastique donc permanente de celle-ci, c’est l’allongement cellulaire (Lockhart JA. 1965). Il est accompagné d’un dépôt de matières pariétales. Ces avancées ont été réalisées sur des méristèmes primaires, responsables de la génération de nouveaux organes et de l’augmentation de la longueur des tiges.

Bien que la croissance secondaire participe davantage au stockage du carbone, nos connaissances sur les mécanismes sous-jacents restent limitées. L’étude du méristème secondaire, appelé cambium, situé sous l’écorce, est plus compliquée du fait des difficultés d’accès pour l’observation et l’expérimentation.

Le cambium produit à la fois les cellules du xylème et du phloème secondaire, respectivement le bois et l’écorce interne. De ce fait, le cambium est confiné entre ces deux tissus rigides (fig. 1).

On trouve autour du cambium les stades successifs de la croissance des jeunes cellules. On y distingue trois zones ; la zone de division cellulaire, la zone d’allongement cellulaire et la zone de différenciation cellulaire. L’ensemble est appelé zone cambiale.
L’expansion de la zone cambiale exerce une contrainte radiale sur l’écorce, qui en retour se retrouve tendue tangentially ce qui se traduit en une force de réaction. La pression de croissance de la zone cambiale, liée à sa pression de turgescence, doit donc vaincre la résistance offerte par l’écorce (fig. 2).

Objectif
L’objectif de cette thèse est d’abord de quantifier ces contraintes mécaniques et de comprendre leurs rôles dans la croissance cambiale. L’hypothèse de départ est que cette croissance est potentiellement limitée et pilotée par l’interaction mécanique avec l’écorce interne. Cette dernière pourrait se voir relaxée par des enzymes pour permettre à la pression exercée par le cambium de vaincre celle de l’écorce. Cette hypothèse présente des analogies intéressantes avec les méristèmes primaires, pour lesquels il a été montré que la croissance des tissus internes est pilotée par l’assouplissement des tissus externes (Dyson R.J. et al 2014 ; Hamant O. et al 2008 ; Vermeer J.E.M et al 2014). Pour vérifier cette hypothèse, il s’agira d’étudier l’évolution de la contrainte exercée par l’écorce sur le cambium. Pour cela, il sera nécessaire de déterminer ses propriétés mécaniques.

La croissance étant un corolaire de la pression de turgescence des cellules du cambium, elle sera elle aussi étudiée.

Matériels et méthodes
Les échantillons proviendront du tilleul *Tilia platyphyllos* (Malvaceae). L’intérêt de cet arbre réside dans son écorce qui est bien organisée (fig. 3). On y trouve des marqueurs correspondant à des zones de dilatations associées à une croissance tangentielle de l’écorce.
Ainsi, ceci permettrait d’identifier les changements anatomiques après expérimentations et potentiellement d’établir des principes généraux de croissance d’un point de vue mécanique.

Pour déterminer quel rôle joue la contrainte exercée par l’écorce sur la croissance cambiale, un dispositif sera mis en place (fig. 4) pour sur contraindre l’écorce et donc le cambium. Des expérimentations préliminaires ont permis la mise au point d’un premier dispositif constitué d’un manchon en silicone, moulée autour d’une tige et comprimée par deux demi-cylindres en cuivre sur lesquels des colliers de serrage venaient se fixer. Une contrainte est donc appliquée à l’encontre de la croissance de l’arbre. Une précontrainte sera fixée à 1 bar et augmentera en même temps que la croissance radiale, jusqu’à son inhibition totale.

Les résultats préliminaires montrèrent une inhibition de la croissance qui serait autour de 4 à 5 bars, mais des améliorations devront être apportées pour préciser les mesures. L’idéal serait de concevoir un système où le capteur de pression serait directement positionné sur l’écorce. Cette expérimentation nous permettra d’observer à posteriori l’anatomie d’une tige sur-contrainte. On pourra notamment étudier la taille des cellules et l’épaisseur des parois, leurs nombres et l’organisation cellulaire de l’écorce et du bois. Une étude de la croissance libre de la tige sera effectuée en parallèle afin de comparer les résultats.
Pour calculer la contrainte exercée par l’écorce sur le cambium, il faut connaître ses propriétés mécaniques transverses. Celles-ci seront mesurées grâce à un dispositif conçu pour mimer la poussée radiale du bois. En amont la tige sera évidée. Une méthode efficace consiste à faire une entaille puis d’appliquer un moment de torsion pour retirer le tube d’écorce. L’idée est d’ensuite de venir mouler une baudruche en silicone à l’intérieur du tube, de le gonfler à des pressions connues puis d’en mesurer la déformation tangentielle.

Résultats attendus

Tout ceci nous permettra d’évaluer l’interaction qui existe entre les différentes contraintes qui s’opèrent lors de la formation du bois et de leurs influences sur son anatomie.

Références

Alméras T., Masato Y., Takashi O. (2006) strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure, 20: 460-467

Dyson R.J. et al (2014) Mechanical modelling quantifies the function importance of outer tissues during root elongation and bending”, New Phytol

Accompagnement de jeunes élèves à la découverte des arbres via l’enseignement par la recherche

CANDELIER Kévin1,2*, MOUELLE Peggy3, OCANA Annie4, BATTEUX Mathilda3, MANZANARES Elisabeth5, CLAIR Patrice6, ANSOUR Ange7

1 CIRAD, Unité Propre de Recherche BioWooEB, 34000, Montpellier, France.
2 CIRAD, Université de Montpellier, CIRAD, Montpellier, France.
3 École élémentaire Albert Camus, Creil, France.
4 Guide nature et Patrimoine, labélisée Valeurs Parc Naturel Régional Oise Pays-de-France
5 Collège G. Havez, Réseau REP+ Oise, Creil, France.
6 Collège J.J. Rousseau, Réseau REP Oise, Ligue des Savanturiers Creillois, Creil, France.
7 Savanturiers-Ecole de la Recherche, Centre de Recherches Interdisciplinaires, Paris, France.

kevin.candelier@cirad.fr

Mots clefs : Apprentissage, Arbre, Croissance, Enseignement par la recherche, Médiation scientifique.

Contexte et objectifs

Les enfants élaborent des représentations de la science, et des scientifiques, dès les premières années de l’école primaire. À ce niveau scolaire, les élèves qui participent à des activités expérimentales, encadrées par des enseignants et des scientifiques, bénéficient d’un autre regard sur la recherche et se projettent davantage dans les pratiques scientifiques. Par le biais de la pédagogie active, et en se conformant à une séquence scientifique usuelle (observations, questionnements, bibliographies, élaboration des protocoles de recherche, recherche proprement dite, analyses et interprétations, conclusion et restitution), compatible avec les activités d’apprentissage en classe, l’élève s’engage dans un apprentissage collectif avec confiance et enthousiasme. Le dispositif « Savanturiers - Ecole de la Recherche » est un programme éducatif qui œuvre pour la mise en place de l’éducation par la recherche à l’Ecole. Au travers ce dispositif, enseignants et élèves se sont intéressés à la croissance des arbres, le temps d’une année scolaire. Leurs recherches se sont focalisées sur le rôle de la sève et de la résine dans l’arbre, mais aussi sur les manières dont les humains et d’autres êtres vivants peuvent transformer et valoriser ces substances naturelles produites par les arbres au cours de leur croissance.

Le premier objectif de ce projet mis en place au sein de la classe est donc pédagogique. En adoptant une démarche de chercheur, les élèves ont tenté de répondre collectivement à des questions précises sur la croissance des arbres et la nature de la sève.

Le deuxième objectif est scientifique et a visé à rendre l’élève responsable à l’égard de l’environnement. La nature représente un formidable terrain pédagogique. À l’extérieur, les enfants entreprennent des expériences directes et multisensorielles, ils prennent confiance, développent leurs compétences physiques, sociales, cognitives et émotionnelles. Cette méthode pédagogique, en lien avec la nature et la profession de chercheur, leur permet de se construire. Elle les invite à observer, imaginer, collaborer, créer, décrire, explorer, nommer, identifier, apprendre. Dans ce projet, l’arbre et la forêt sont les supports mis au service de l’apprentissage des jeunes élèves à la faveur d’interventions d’un guide nature et d’un chercheur en science du bois. Ce projet a pour but d’initier les jeunes élèves au domaine du vivant, en découvrant la croissance des arbres tout en enrichissant leur vocabulaire autour de
la forêt et de la biodiversité. La finalité du projet est que les élèves prennent conscience de l’importance des arbres et de la forêt dans la biodiversité et le monde qui les entoure.

Matériaux et Méthodes

Ce projet s’est fait avec l’appui du Centre de Recherches Interdisciplinaires, de la Cité Educative de Creil, et les interventions d’un chercheur en science du bois et d’une guide nature & patrimoine. Plusieurs classes des écoles élémentaires du Réseau d’Éducation Prioritaire de Creil se sont ainsi intéressées à la croissance des arbres, à la faveur d’un projet proposé par le dispositif « Savanturiers-Ecole de la recherche ».

La figure 1 schématisse les différentes étapes de la démarche scientifique adoptée par les élèves et les enseignants, ainsi que les intervenants extérieurs à la classe (chercheur et guide) qui les ont accompagnés dans leur démarche en quête de savoirs.

Fig. 1 : Etapes de la démarche scientifique adoptée par les élèves et enseignants au cours du projet, réalisées en étroite collaboration avec un chercheur et une guide nature & patrimoine.

Résultats et Discussions

Observations et questionnements induits

Deux élèves ont observé qu’un liquide jaune coulait sur le tronc d’un arbre dans la cour de récréation. En se demandant ce que cette substance pouvait être et si elle-ci avait été produite par l’arbre, la classe a décidé de s’interroger et de mener un projet de recherche sur cette substance (Figure 2). Les élèves ont fait émerger les questions suivantes : Quelle est cette substance collante ? À quoi sert-elle ? Est-ce de la sève ou de la résine ?
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Fig. 2 : Découverte, par les élèves, de la sève d’un pin sylvestre dans la cour de récréation :
(a) liquide jaune s’écoulant d’une branche coupée, (b) tentative de prélèvement d’un échantillon du liquide sur la branche et (c) observation du liquide sur l’écorce.

Produit de la recherche documentaire
Leur travail collaboratif a guidé leurs investigations bibliographiques afin d’évaluer ces hypothèses. Durant cette phase, les élèves ont appris les astuces pour mener une recherche d’informations, en recourant à divers supports tels que la bibliothèque de l’école, des livres, internet, ainsi que des documents audiovisuels. En récoltant les informations, les élèves sont devenus critiques vis-à-vis de la fiabilité des sources consultées et de la véracité des informations obtenues. Par la suite, ils se sont donc intéressés aux différences qu’il peut y avoir entre la sève et la résine. De cette comparaison, les élèves ont tenté de formuler les questions scientifiques pour répondre à leur quête de connaître et savoir : Comment poussent les arbres ? De quoi sont composées la sève et la résine, et en quoi sont-elles différentes ? À quoi sont-elles utiles pour l’arbre et pour l’être humain ?

Organisation et analyse des résultats obtenus par les expérimentations de plantations
À la faveur de l’expérimentation que la classe a menée, les élèves ont pu, tout au long de l’année scolaire, observer les noyers pousser grâce à la terre, la lumière, l’eau et l’air. Ils ont ainsi observé et retracé, par des mesures et des photographies, l’évolution de la croissance de leurs arbres (Figure 3).

Fig. 3 : Informations retranscrites dans le cahier d’expérimentation des élèves lors des essais de plantations.

Fig. 4 : Représentation graphique de la croissance des plantations en fonction du temps.
Dans la continuité de la démarche scientifique, élèves, enseignants et mentor scientifique ont réfléchi à un moyen simple et visuel qui leur permettrait d’illustrer les résultats de leurs expériences. Les élèves ont transposé le développement en hauteur des arbres avec leur propre croissance. Avec l’aide des enseignants et du mentor, les élèves ont trouvé leur propre courbe de croissance dans leurs carnets de santé, puis les ont analysées. Les élèves et les enseignants ont ainsi décidé d’illustrer les résultats de leur expérience avec la même méthode. La figure 4 présente donc le développement des jeunes plants de noyers, observés par les élèves au cours de leurs expérimentations, en fonction de la croissance en hauteur et de l’augmentation de leur nombre de feuilles, au cours du temps.

Conclusion
À la faveur de ces projets, les élèves ont donc acquis les premières compétences nécessaires pour : (i) rendre compte des observations, expériences, hypothèses et conclusions en utilisant un vocabulaire précis ; (ii) utiliser différents modes de représentations formalisées sous forme de schéma, dessin, croquis, tableau, graphique ou texte ; et finalement (iii) expliquer un phénomène à l’oral et à l’écrit. L’ensemble de cette phase a donc permis aux élèves de (i) rendre visible le travail de la classe, (ii) garder des traces de toutes les étapes du projet, (iii) travailler les compétences linguistiques, (iv) communiquer avec d’autres classes, des chercheurs et des experts, et enfin (v) faire le lien entre la science et la société représentée par les parents et les autres écoles.

Le ressenti des élèves, vis-à-vis de ce projet scientifique sur les arbres, met en évidence que la pédagogie active et l’expérimentation par la pratique, en classe ou sur le terrain, sont des éléments essentiels au développement de la curiosité, de la rigueur, de l’esprit créatif et critique des jeunes élèves, ce qui leur permet de répondre à leurs nombreuses questions que le monde alentour leur suggère.

Remerciements
Les auteurs remercient (i) le Centre de recherches interdisciplinaires de Paris et les « Savanturiers – Ecole de la Recherche » pour leur appui dans ces programmes de mobilisation et de fédération entre les communautés éducatives et scientifiques au service de l’École; (ii) la ville de Creil et la ligue des Savanturiers Creillois, pour leurs soutiens et leurs activités de coordination au niveau régional ; (iii) l’alliance Agreenium et le Cirad, pour leur participation et l’apport scientifique à la dynamique des « Savanturiers » dans la compréhension des agrobiosciences ; (iv) Le Parc Naturel Régional Oise-Pays-de-France pour l’organisation des journées en forêt, et (v) l’ensemble des élèves, des enseignants et des membres des différentes équipes pédagogiques, l’équipe de l’école élémentaire Albert Camus et son Directeur Xavier Bulliard, la formatrice Math-Sciences Sandrine Métarfi, ayant tous œuvrés au bon déroulement de ce projet « Savanturiers ».

Liste des élèves ayant participé au projet
Anaya, Dhélia, Félix, Junaid, Louna, Manel, Marwa, Mériame, Youssef, Walid, Johise, Jihane, Talha, Mohamed, Neila, Rahma, Ylona, Valéry, Ania, Ismail, Sultan et Aïda.
Wood density prediction using near-infrared hyperspectral imaging: an application for early selection of Eucalyptus grandis trees.

CHAMBI-LEGOAS Roger1,2,* TOMAZELLO-FILHO Mario1, CHAIX Gilles1,3

1Universidade de São Paulo, ESALQ, Departamento de Ciências Florestais, 13418-900, Piracicaba, SP, Brazil
2Universidad Nacional Autónoma de Chota, Escuela Profesional de Ingeniería Forestal y Ambiental, Chota, Perú
3CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
rchambilegoas@gmail.com

Keywords: NIRS; wood densitometry; water deficit; wood quality; juvenile selection.

Introduction

Wood density is related to pulp and paper quality (Rana et al., 2011) and could decrease with future fast-growing varieties, as higher growth rates are moderately related to lower wood densities. Although improving wood density of Eucalyptus trees is not yet in demand in breeding programs, it is important to anticipate future needs to select varieties not only for high growth rates but also for lower growth/wood density ratios. The strong correlations between wood densities at juvenile and mature stages assure the suitable selection of the best varieties at juvenile stage. Due to its biological nature, wood density is highly variable across age (Miranda et al., 2001). Soil water availability has been shown to affect the density of the wood. Mapping wood density over the whole cross section allows measuring the inter-annual (between tree rings) variation and calculating juvenile-mature correlations.

Commonly, wood density radial variation is performed using X-ray microdensitometry (XRD). Although this technique provides a high spatial resolution and accuracy on wood density estimation, it is time-consuming and only allows analyzing a small region from wood disks. Near-infrared hyperspectral imaging (NIR-HSI) allows the spectral and spatial information of the whole disk to be obtained quickly. If an efficient calibration model is constructed, NIR-HSI can be a valuable and practical tool for mapping wood density and estimating inter-annual variation.

In this context, the objective was to evaluate the performance of use NIR-HSI to estimate wood density variation across the age of Eucalyptus grandis trees and estimate the juvenile-mature correlations on wood density under different soil water conditions.

Material and Methods

The samples came from 6-year-old \textit{E. grandis} trees from São Paulo, Brazil, subjected to two treatments: 37% throughfall reduction (\textminus W) and non-throughfall reduction (+W). Twenty-seven trees by treatment were sampled randomly, and a cross-sectional disk (3 cm height) at breast height was cut from each tree.

The NIR-HIS images of polished disks were obtained using a stationary chemical imaging camera (SisuCHEMA, SWIR, Specim®) with a resolution of 625 μm/pixel. We used 226 spectral channels comprising between 1048 nm to 2456 nm wavelength. Then, wood density profiles of 15 disks determined by XRD images were used as NIR-HSI reference values. Pixels of NIR-HIS and XRD images were averaged and matched (Fig. 1). As a result, a data set with 2478 hyperspectral reflectance measurements and corresponding wood density values were created to construct calibration models.
A principal component analysis (PCA) was applied to identify abnormal spectra. Two models, PLSR (partial least squares regression) and LWPLSR (locally weighted partial least squared regression) with several pre-treatments of spectra, were tested for calibration using the cross-validation method (CV). The models with the minimum root mean square error of cross-validation (RMSECV) were selected to perform independent validation. Models were performed in R software.

The best calibration model was applied in the NIR-HIS images to create a wood density map of 42 whole discs (Fig. 2A). Juvenil-mature correlations of wood density were evaluated using two approaches: correlation between individual growth rings (ring-ring correlations) (Fig. 2B) and correlation between aggregated growth rings, i.e., area of all the rings from pith up to a given age (age-age correlations) (Fig. 2C).
Results

Both in PLSR and LWPLSR, calibration models with raw spectra showed higher performance than with treated spectra. LWPLSR showed a better performance than PLSR (Fig. 3).

![Fig. 3: Results of the independent validation of the PLSR and LWPLSR. \(R^2 \) is the coefficient of determination; RMSEP is the root quadratic square error of prediction.](image)

We observed moderate ring-ring correlations between the first and last growth rings (\(r = 0.54 \) to 0.7). Age-age correlations were stronger than ring-ring correlations over 6 years. Overall, ages 6 and 1 was highly correlated (\(r = 0.72 \) to 0.93). Correlation increased until 0.87-0.94 when correlated ages 6 and 3 (Fig. 4). Ring-ring and age-age correlations were higher in +W than in –W.

![Fig. 4: Age-age correlation matrix plot by treatment.](image)

Discussion

Calibration with the LWPLS model demonstrated better performance than the PLS model for wood density prediction on *E. grandis* trees. In addition, our LWPLS model produced lower RMSECV than PLS model in *Pinus pinea* (Fernandes et al., 2013).

At 3 years of age, which is the standard selection age for growth (Bouvet et al., 2003), the wood density was strongly correlated with 6 years of age (\(r=0.9 \)). Also, the correlation between 1 year of age and 6 years of age was 0.85, indicating that selection at ages under 3
is also feasible. These results agree with breeding improvement studies in Eucalyptus species. (Greaves et al., 1997; Osorio et al., 2003). As expected, ring-ring correlations were not as large as the age-age correlations over 6 years. However, correlations between rings 1-2 and ring 5-6 were moderate-high varying from 0.51 to 0.7, indicating that trees with high densities at young ages tended to form denser wood in subsequent years.

Selection studies in different water regimes are essential to know if increasing tree stress affects juvenile-mature correlations for tree selection. The correlations between ages 1-2 and 5-6 were lower in –W than in +W. However, even under water stress conditions, the selection at 3 years old is efficient (r=0.81). This point is important to consider in the framework of tree breeding programs when tests are made in regions with water deficits.

Conclusions

The use of NIR-HSI demonstrates good performance to predict wood density using LWPLSR model calibration and be helpful to build wood density maps of the whole cross-section. The age-age and ring-ring correlations showed that juvenile selection of trees under 3 years is feasible to predict wood density at 6 years. In non-water-limited sites, tree selection can be highly accurate even at 1 year of age. Juvenile-mature correlations are slightly reduced in sites under 37% water deficit.

References

Une approche innovante pour l’étude des transferts couplés d’eau et d’oxygène dans le bois de chêne de tonnellerie

COLIN Julien1, ROUSSEY Claire1,2, TOUNSI Mohamed Amine1,2, TEISSIER DU CROS Rémi2, LIFTOUX-DESRUES François2, CASALINHO Joel1 et PERRÉ Patrick1

1Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Gif-sur-Yvette, France
2Département R&D, Chêne & Cie, Merpins, France

julien.colin@centralesupelec.fr

Mots clefs : barrique, élevage des vins, diffusion massique, imagerie à rayons X, méthode de la face arrière, modélisation numérique, loi de mélange.

Introduction

Lors de l’élevage, une oxydation ménagée des composés du vin modifie sa composition et sa qualité. Ce processus entretient une faible pression partielle d’oxygène (O2) dans le vin et donc un gradient de concentration de cette espèce dans l’épaisseur des douelles. Il en résulte un passage lent et continu d’O2 du milieu extérieur, le chai, vers l’intérieur de la barrique, notamment par diffusion (Nevares et del Alamo-Sanza, 2018). De précédents travaux ont porté sur la diffusion d’O2 dans le bois sec à l’air. Ils ont permis de mieux comprendre les modalités de transfert, et notamment de démontrer que l’O2 ne diffuse pas à travers les parois cellulaires, mais uniquement dans la porosité ouverte du bois (Roussey et al., 2021). Cependant, l’état hydrique du bois tout au long de cette expérience était éloigné des conditions réelles. La présence de liquide dans les lumen des cellules du bois, par imprégnation du vin, limite considérablement la cinétique de diffusion de l’O2. En effet, le rapport entre le coefficient de diffusion de l’O2 dans l’air et dans l’eau (composé majoritaire du vin) est d’ordre 4. Ainsi, la dynamique d’imprégnation a été précédemment étudiée par imagerie à rayons X (Roussey et al., 2018). Les transferts de liquide et d’O2 avaient donc été jusqu’ici abordés de manière découpée, par des méthodes complémentaires.

Afin d’approcher les conditions en chai, les travaux présentés dans ce papier visent à mieux comprendre la dynamique de transfert d’O2 dans le bois de chêne en présence de liquide.

Matériels et méthodes

Un nouveau dispositif expérimental est conçu et fabriqué (Fig. 1). Il conjugue les méthodes précédemment évoquées.

Préparation de l’échantillon

Les échantillons de chêne ont été usinés dans des merrains préalablement stockés sur parc à la tonnellerie Taransaud pendant 24 mois. Pour éviter les fuites latérales de liquide et de gaz entre l’échantillon et le support la géométrie retenue est cylindrique (36 mm de diamètre, et 15 mm d’épaisseur). Dans une barrique, l’épaisseur des douelles coïncide avec la direction tangentielle du bois. Afin d’étudier les transferts dans cette seule direction, les transferts latéraux ont été annulés. Pour ce faire, la résine époxy est appliquée sur la face latérale des échantillons.
Avant le début de l’expérimentation, les échantillons ont été placés dans une enceinte climatique régulée à une température de 24 °C et à une humidité relative de 72 % jusqu’à stabilisation de leur masse, afin de maîtriser leur champ spatial de teneur en eau (MC) initiale. MC est alors considérée comme uniforme dans l’échantillon, proche de 10 %.

Mesure des concentrations en O₂ et détermination du coefficient de diffusion

Le principe d’étude de la diffusion de l’O₂ consiste à soumettre la face avant de l’échantillon à un créneau de concentration d’O₂, et à mesurer l’évolution de cette concentration en face arrière (Perré et al., 2015). Un bouchon échancré en PVC est placé au niveau de la face arrière de l’échantillon, dans lequel est collé un capteur d’O₂ (pastille PSt3, PreSens) sur une lame en verre scellée de manière étanche. La pastille est interrogée par fibre optique (Fibox 4 de PreSens) sans perturber la concentration d’O₂. En face avant, un deuxième bouchon, fabriqué par impression 3D, peut contenir 64,5 mL de liquide. Une consigne en concentration d’O₂ est imposée dans le fluide (gaz ou liquide), par balayage d’azote (N₂) ou d’air. Une pastille PSt3 est également placée dans ce bouchon. L’échantillon et les bouchons sont maintenus en contact et alignés par un tube souple en néoprène fixée dans un tube rigide en PVC.

Le coefficient de diffusion d’O₂ dans le bois est ensuite déterminé par méthode inverse, en minimisant l’écart entre l’évolution expérimentale de O₂ en face arrière et celle prédite par simulation numérique. Le modèle suppose un champ initial de concentration d’O₂ uniforme et impose des conditions de Dirichlet sur les faces de l’échantillon. La diffusion d’O₂ dans le bois est formulée par une loi de Fick. Le bilan en face arrière intègre d’éventuelles fuites quantifiées par un test blanc.

Détermination de MC et impact sur le modèle de diffusion

Lorsque le bois est partiellement saturé en eau, le flux diffusif d’O₂ dépend de la densité et de l’agencement des pores remplis par le liquide. Dans cette étude, on fait l’hypothèse que la valeur de D est une fonction de la fraction liquide dans les pores (x_l) et peut être calculée selon une loi de mélange (Perré et Turner, 2001), dont le paramètre n doit être déterminé (Éq. 1).
Protocole expérimental

L’expérimentation est conduite en trois phases. Dans un premier temps, la face avant est exposée à un balayage de N₂ sans liquide pendant 7 jours. Cette phase permet de déterminer \(D \) de l’O₂ dans le bois sec. Pour revenir à l’état initial, à savoir une concentration d’O₂ dans les pores du bois uniforme et égale à la concentration dans l’air, l’échantillon est ensuite soumis à des cycles de vide, hors du support. Lors de la seconde phase, l’échantillon est mis en contact avec l’eau avec bullage d’air. Il est ainsi possible de suivre l’imprégnation de l’eau dans le bois en absence de transfert d’O₂. Enfin, après 25 jours d’imbibition et une diminution de la vitesse du front d’eau libre, l’air est substitué par le N₂. La dynamique de variation d’O₂ en face arrière permet de déterminer la valeur de \(D \) dans le bois humide.

Quatre échantillons ont été utilisés. Les résultats de l’échantillon n°2 sont présentés ci-après.

Résultats et discussion

Fig. 2 : Dynamique de variation d’O₂ en face arrière du bois sec (échantillon n°2)

Fig. 3 : Dynamique de variation d’O₂ en face arrière du bois humide (échantillon n°2)

Avec le bois sec, moins de 7 jours sont nécessaires pour diviser par 2 la concentration d’O₂ en face arrière (Fig. 2), alors qu’il faut plus de 14 jours avec le bois humide (Fig. 3). Pour ces deux configurations, les valeurs globales de diffusivité identifiées pour l’échantillon sont respectivement \(D = 1,04 \times 10^{-10} \) m²/s et \(D = 3,75 \times 10^{-11} \) m²/s. Cependant, ce dernier résultat doit être affiné car la valeur de \(D \) varie spatialement car MC n’est pas uniforme. Plus précisément, la fraction de liquide dans les pores \((x_i) \) doit être considérée. L’application de la loi de mélange requiert donc au préalable la connaissance du champ de \(x_i \) et le coefficient de diffusion d’O₂ dans le bois saturé. Puisque l’O₂ ne diffuse que dans le réseau de pores du bois (et non à travers les parois cellulaires), on peut supposer que la tortuosité diffusive reste constante quelle que soit MC et en déduire une valeur de \(D \) dans le bois saturé en eau, \(1,24 \times 10^{-14} \) m²/s (Éq. 2).

\[
\tau_{d}^{2} = \phi \cdot \frac{D_{O_{2}/bois\,sec}}{D_{O_{2}/air}} = \phi \cdot \frac{D_{O_{2}/eau}}{D_{O_{2}/bois\,saturé}} \Rightarrow D_{O_{2}/bois\,saturé} = D_{O_{2}/bois\,sec} \cdot \frac{D_{O_{2}/eau}}{D_{O_{2}/air}}
\] (2)

On peut constater sur la figure 2 que MC augmente en haut de l’échantillon (en abscisse 0) dès la mise en contact avec le liquide. MC dépasse le point de saturation des fibres (≈30 % ; Siau, 1984) dès le 5ème jour. Du liquide est alors présent dans les pores du bois. Puis le front liquide progresse par migration capillaire dans l’épaisseur de l’échantillon.
et atteint 3,3 mm au 41ème jour. Pour déduire x_t à partir de MC et, *in fine*, la valeur du paramètre n de la loi de mélange, la porosité locale devra être déterminée à partir de la densité du bois sec, par analyse d'images. Ceci fait l'objet de travaux en cours.

Fig. 2 : Évolution temporelle du champ de la teneur en eau dans l’échantillon n°2

Conclusion et perspectives

Le dispositif expérimental et la méthode d’analyse présentés dans ce papier permettent de suivre les transferts couplés de liquide et d’O_2 dans le chêne, en s’approchant des conditions de chai. Les mesures ont très clairement témoigné de la diminution de la diffusion de l’O_2 en présence d’un front d’imprégnation qui progresse dans l’échantillon.

Les développements numériques à venir permettront d’identifier la valeur de n, paramètre de la fonction liant D à MC.

Références

Mise en œuvre de chitosanes fonctionnalisés dans la formulation d’adhésifs structuraux à destination de la filière bois

Jeanne SILVESTRE 1, Cédric DELATTRE 1,2, Philippe MICHAUD 1 et Hélène de BAYNAST 1

1Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
2Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
jeanne.silvestre@uca.fr

Mots clefs : adhésif ; chitosane ; bois ; formulation ; polysaccharide ; résistance à l’eau

Contexte général
La grande majorité des adhésifs pour le collage du bois présents actuellement sur le marché sont issus de la synthèse chimique, très souvent pétrosourcés et donc non renouvelables. Ils se révèlent très souvent toxiques notamment du fait de leurs teneurs en composés organiques volatils. Les préoccupations croissantes en matière de santé et d'environnement mais également l’évolution de la réglementation internationale, incitent les industries du bois à développer des adhésifs non toxiques et biosourcés.

Le chitosane est un polymère 100% biosourcé obtenu après désacétylation de la chitine, deuxième polysaccharide naturel le plus abondant sur Terre. Le chitosane a démontré de réelles propriétés en tant qu’adhésif pour le collage du bois, compétitives de celles des adhésifs de synthèse actuellement sur le marché. Cependant, il perd une grande partie de ses performances en matière d’adhésion au contact de l’eau du fait de son caractère hydrophile.

Ces travaux ont pour but la modification (chimio-enzymatique) du chitosane et l’élaboration de formulations pour le collage du bois en conservant les propriétés adhésives de ce polymère en présence d’eau.

Manipulations effectuées
Une sélection de 9 chitosanes a été réalisée afin de disposer d’une large gamme de polymères aux caractéristiques différentes (masse molaire, degré de désacétylation, origine, fournisseur, coût, disponibilités, etc. (Tableau 1)).

<table>
<thead>
<tr>
<th>Fournisseur</th>
<th>Masse molaire (g.mol⁻¹)</th>
<th>Viscosité (cPs)</th>
<th>DD (%)</th>
<th>Origine</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Aldrich</td>
<td>50 000-190 000</td>
<td>20-300</td>
<td>75-85</td>
<td>Animale</td>
<td>CS1</td>
</tr>
<tr>
<td>Low molecular weight (MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma Aldrich</td>
<td>Non renseignée</td>
<td>200-800</td>
<td>75-85</td>
<td>Animale</td>
<td>CS2</td>
</tr>
<tr>
<td>Medium MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma Aldrich</td>
<td>310 000-375 000</td>
<td>800-2000</td>
<td>>75</td>
<td>Animale</td>
<td>CS3</td>
</tr>
</tbody>
</table>

Tableau C 1 : Caractéristiques des chitosanes utilisés pour l'étude
Les caractéristiques physico-chimiques des chitosanes sélectionnés ont été déterminées en vue de sélectionner ceux dont les propriétés sont les plus compatibles avec une utilisation en tant qu’adhésif du bois. Des études thermiques (ATG, DSC) sur les chitosanes et mécaniques (étude de la contrainte maximale avant la rupture sur des éprouvettes de pin encollées à l’aide de solutions acides de chitosane à différentes concentrations) ont été menées.

Conclusion et perspectives

Ces premières analyses ont permis de faire ressortir les chitosanes CS1, CS5 et CS6 en termes de propriétés adhésives. L’établissement d’une corrélation entre leurs caractéristiques structurales et physico-chimiques et leurs propriétés adhésives ne semble cependant pas évidente. Une caractérisation approfondie des propriétés physico-chimiques des chitosanes sélectionnés est donc prévue (SEC-MALLS, RMN, dosage des fonctions amines).

Une étude des protocoles expérimentaux pour la réticulation chitosanes sélectionnés par des groupes phénoliques a été initiée en se basant sur les recherches bibliographiques. Les chitosanes modifiés seront ensuite caractérisés afin de vérifier les exigences des normes EN204 et EN205.

<table>
<thead>
<tr>
<th>High MW</th>
<th>Sigma Aldrich From shrimp shell</th>
<th>Fisher Scientific</th>
<th>France Chitine</th>
<th>Glentham Life Sciences</th>
<th>ChiBio Biotech</th>
<th>Kitozyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non renseignée</td>
<td>Non renseignée</td>
<td>Non renseignée</td>
<td>Non renseignée</td>
<td>Non renseignée</td>
<td>Non renseignée</td>
</tr>
<tr>
<td></td>
<td>600 000-800 000</td>
<td>50-200</td>
<td>98 000</td>
<td>22.9</td>
<td>1000</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>Non renseignée</td>
<td>90</td>
<td>85</td>
<td>>98</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Non renseignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non renseignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non renseignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non renseignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non renseignée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les caractéristiques physico-chimiques des chitosanes sélectionnés ont été déterminées en vue de sélectionner ceux dont les propriétés sont les plus compatibles avec une utilisation en tant qu’adhésif du bois. Des études thermiques (ATG, DSC) sur les chitosanes et mécaniques (étude de la contrainte maximale avant la rupture sur des éprouvettes de pin encollées à l’aide de solutions acides de chitosane à différentes concentrations) ont été menées.
L'agroforesterie: une approche pour protection du bois

Nafissa Dehimeche
Centre d'écologie fonctionnelle et évolutive-CEFE-CNRS-Montpellier
nafissa_dehimeche@outlook.fr

Mots clefs : arbres ; bois ; cultures ; l’agroforesterie ; métabolites secondaires ; COV ; terpènes

Contexte de l’étude Il est bien connu que les métabolites secondaires jouent un rôle majeur pour les propriétés sensorielles et la durabilité face aux dégradations biologiques des bois. Les métabolites secondaires du bois n'ont été étudiés que pour un petit tiers des essences, avec une richesse de connaissances très variable. Certaines métabolites secondaires apparaissent comme profondément imbriquées dans la paroi cellulaire des fibres, alors que d'autres ne sont présentes que dans les lumens. La quantité des métabolites secondaires varie en fonction des saisons. Il a été rapporté que pour une majorité de composés, le printemps et l’été sont les saisons au cours desquelles le bois accumulait une grande quantité de métabolites. Il a été rapporté que les métabolites secondaires produits par le bois pourraient le protéger des stress biotiques : champignons, bactéries et insectes. Mais peu de travaux ont montré la relation entre la durabilité des bois et leurs compositions en métabolites secondaires antifongiques éventuellement présents dans l’arbre. En outre le bois ne produit pas des énormes quantités de ces métabolites pour assurer une meilleure protection. (La composition chimique du bois varie suivant les espèces, mais grossièrement le bois est constitué d'environ 50 % de carbone, 42 % d'oxygène, et faible pourcentage de substances organiques tels que polysaccharides, résines, tannins, cires, alcaloïdes, composés aromatiques volatiles, etc). Certains bois, riches en principes actifs (insecticides, fongicides naturels), sont naturellement résistants aux attaques d'insectes et de champignons, c’est des d’essences naturellement durables. Par exemple le chêne (Q. ilex), le frêne velours (F. velutina), le pin noir d’Autriche (P. nigra) sont connue par leur résistance vis-à-vis le champignon mortel des arbres Armillaria mellea. Cependant beaucoup d’autres essences sont sensibles. À cet effet, la plantation des cultures et plantes de service connues par leur richesse en métabolites secondaires dans un système agroforesterie pourrait présenter un moyen constitutif de protection du bois. Cette hypothèse a été confirmée par plusieurs études dans le système des cultures, mais à notre connaissance très peu de recherches se sont intéressées à l’étude du rôle de l’agroforesterie et l’association des arbres à des cultures dans la défense des arbres contre les stress environnementaux à travers les métabolites secondaires. En France, le système agroforesterie est relativement récent, la première parcelle implantée en grande culture remonte à 1975, en Charente maritime. À Hérault, l’INRA de Montpellier a réalisé des plantations sur grandes cultures en 1995 sur le domaine du Conseil général de l’Hérault à Restinclières.

D’une part, l’agroforesterie vise à optimiser l'espace, produire plus et mieux, et dans cette perspective, l’arbre a partout sa place : L’arbre est un outil de production et d’aménagement profitable à toutes les échelles, sur tous les sols, pour tous les enjeux de territoire et tous les systèmes de cultures : grandes cultures, maraîchage, viticulture, bois pâturés. Intégrer l’arbre
dans la parcelle agricole permet de créer un système plus complexe. L'arbre est une composante qui modifie en profondeur le fonctionnement et les échanges au sein de l'agrosystème, et notamment les échanges sol-plante-atmosphère. En plus, les arbres captent le carbone et deviennent des puits de carbone qui réduisent les gaz à effet de serre. Le système racinaire des arbres aide à prévenir l'érosion du sol, ce qui aide à son tour à prévenir la pollution de l'eau. Les arbres offrent aux cultures un microclimat équilibré, puisent les éléments nutritifs situés dans les couches profondes du sol et les rendent accessibles aux cultures grâce à leur feuillage. En outre, l’agroforesterie permet de favoriser une croissance rapide et régulière des arbres qui bénéficient des bonnes conditions agronomiques des surfaces agricoles. Une expérimentation INRAE sur un système associant culture de blé et alignements de noyers à Restinclières (Hérault) a montré qu’une parcelle agroforestière de 100 ha pouvait produire autant de biomasse (bois et produits agricoles) qu’une parcelle de 136 ha où arbres et cultures auraient été séparés, soit un gain de 36%. D’autre part, l’association des cultures et plantes de services aux arbres va permettre une communication chimique entre eux à travers l’émission des métabolites secondaires notamment les composés organiques volatiles (COV) tels que les terpènes (isoprène, monoterpenes, sesquiterpenes), les composés phénolique et les flavonoides. Ces métabolites pourraient protéger le bois contre la colonisation fongique par une double fonction : une activité fongicide et le fait d’être d'excellents capteurs de radicaux libres (antioxydants). L’activité de piégeage des radicaux est particulièrement importante car les champignons utilisent les radicaux pour perturber les parois cellulaires. D’autre part, la communication chimique peut activer directement les mécanismes de défense par attraction des prédateurs pour une défense précoce. Au niveau racinaire, les COV peuvent participer à la défense contre les organismes qui colonisent la rhizosphère des arbres voisins. Le système agroforesterie offre de bonnes conditions pour mettre en pratique des mesures de protection de toute des cultures, des arbres et du bois.

À droites, des fourmis (Camponotus), en symbiose avec un champignon, ont consommé les parties tendres des cernes du bois, à gauche, altération physique et colorée due à un champignon et des bactéries décomposant le bois.
À droites, des attaques de scolytes (insectes xylophages) sur les épicéas, à gauche cire blanche à l’aspect laineux secrétée par la cochenille du hêtre.

Objectif et travail envisagé
Après une étude de faisabilité qui permet un choix des essences adaptées, le premier volet de la recherche consiste à sélectionner un certain nombre d’espèces d’arbres dont les bois possèdent des durabilités naturelles différentes. La durabilité naturelle est une donnée technologique accessible par la mesure de la perte de masse au cours du temps d’un échantillon de bois exposé à l’attaque fongique. Plus la perte de masse est faible, plus le bois est considéré comme durable, car il est capable de résister à la dégradation fongique à laquelle il a été exposé.

Nous chercherons à expliquer : 1/ comment la résistance de bois des arbres aux infestations fongiques pourrait être différente et expliquée par la présence/absence de composés antifongiques. En ce qui concerne les espèces des arbres, sont à définir selon la zone d’étude, dans l’Hérault ou autre région en France et les conditions environnementales de la région. Le type de stress (champignon /et ou insecte) est à étudier ; deux paramètre à prendre en compte : l’habitat : forêts de conifères, de feuillus ou mixtes, terrains cultivés, etc, et les périodes de pousse des champignons.

2/ comprendre comment l’introduction des cultures (des plantes de services) aux arbres dans une approche agroforesterie influence la résistance du bois au stress fongique et aux attaques des insectes.

Méthodes
Criblage des extraits de bois de différents arbres connus par leur durabilité forte, durabilité moyenne, durabilité faible c'est-à-dire d’une forte résistance, une résistance moyenne et une résistance faible respectivement aux infestions fongiques (à partir de données bibliographiques)

Le plan de réalisation sera :
1. Récolte du matériel végétal
2. Identification botanique
3. Extraction avec des solvants des différents organes des plantes récoltées (Ecorces, bois, feuilles, racines)
4. Essais biologiques : évaluation de l’activité antifongique de tous les extraits produits sur des souches de champignons.

L’évaluation de l’activité antifongique sera réalisée par la méthode de test de perforation en
agar, ce test consiste à mettre en contact avec le champignon, inoculé sur la surface du milieu gélosé, l’extrait déposé dans une cavité creusée dans le milieu. Ce test est adéquat pour la détection rapide de l’activité des extraits, qui doivent être ensuite soumis à un test permettant de mesurer la concentration inhibitrice par une méthode quantitative utilisant le test de microdilution permettant de mesurer la Concentration Inhibitrice Minimale (CIM). Ce criblage permettra de sélectionner et mettre en avant des extraits possédant une bonne et faible activité antifongique.

On peut également le rôle des champignons bénéfiques tels que Trichoderma harzianum (Ribera et al., 2017), cannaient par leur activité d’empêchement de développement des champignons pathogènes (comme certains fusarium), et étudier la réponse des différents arbres après le traitement.

Le deuxième volet de la recherche consiste à sélectionner des essences contrastées en terme de durabilité (sensibilité aux champignons) issues de la première étude (criblage), puis associer les arbres à des plantations des plantes de services ayant une grande activité antifongique tels que le thym, le romarin, etc et comparer leur comportement vis-à-vis les infections en champignons et / ou des insectes.

Le plan de réalisation sera :
1. Récolte du matériel végétal
2. Identification botanique
3. Extraction avec des solvants des différents organes des plantes récoltées (Ecorces, bois, feuilles, racines)
4. Mesure des émissions des COV des arbres et de bois
5. Suivi de réponse des arbres

Résultats attendus En partant du principe de différence de la durabilité des bois des arbres, le rôle des plantes à grande activité fongique et la communication chimique entre les arbres et les cultures dans le système agroforesterie, les résultats de cette étude (si comme les hypothèses émissent) pourraient mettre en évidence les métabolites secondaires et les essences résistants au stress, favoriser les mélanges des espèces très durables, peu durables, faiblement durable, et les cultures des plantes de service pour une meilleure protection de bois.

Ma situation professionnelle Je suis titulaire d’un doctorat en écologie fonctionnelle, que j’ai réalisée à l’université de Montpellier et au sein du centre d’écologie fonctionnelle et évolutive (CEFE). Mes intérêts de recherches portent sur les stratégies de la défense et protection des plantes contre les stress environnementaux, notamment à travers les métabolites secondaires et les COV qui produisent et émettent dans l’environnement. Je suis intéressée également les milieux forestier et le système agroforesterie. Je suis à la recherche post doctorat dans le domaine. J’ai des connaissances et compétences en mesure des métabolites secondaires et les COV. Je n’ai pas de partenaires ni d’un projet associé pour le moment.
Caractérisation et modélisation de placages pour l’optimisation et l’homogénéisation des propriétés mécaniques de LVL/ contreplaqué

DEMOULIN Leyne1, POT Guillaume1, GIRARDON Stéphane1, COTTIN Fabrice1, LETOURNEAU Roger1, DENAUD Louis1

1Arts et Metiers Institute of Technology, LABOMAP, Université Bourgogne Franche-Comté, HESAM Université, F-71250 Cluny, France
leyne.demoulin@ensam.eu

Mots clefs : Comportement mécanique ; orientation des fibres ; LVL ; contreplaqué ; modèle éléments finis

Contexte et objectifs

L'utilisation de matériaux biosourcés est un enjeu d'avenir pour la transition écologique et solidaire, en particulier pour atteindre les objectifs de rénovation et modernisation énergétique dans le bâtiment et pour contribuer à la diminution des émissions de CO2 des industries du transport. Le marché demeure néanmoins encore confronté à des barrières techniques et scientifiques. Le succès de l'intégration de ces matériaux dans les applications du XXIème siècle nécessite une approche fine pour intégrer les spécificités inhérentes aux matériaux issus du vivant. Les nombreux progrès réalisés dans les équipements scientifiques de caractérisation des matériaux, dans les outils de calcul numérique et de dimensionnement laissent penser que les chercheurs et ingénieurs sont à ce jour mieux armés qu’au début du XXème siècle pour assurer une intégration robuste et pérenne de ces matériaux entachés d’une forte variabilité et d’une grande complexité dans de nombreux domaines d’application et en particulier dans le domaine du génie-civil et du transport.

Dans le domaine du bois, une des méthodes connues et utilisées depuis plusieurs décennies pour mieux maîtriser les propriétés mécaniques des bois de structure est de recourir à des matériaux reconstitués, généralement connus sous leurs acronymes : BMR (Bois Massif Reconstitué), qu’il s’agisse de BLC (Bois Lamellé-Collé), CLT (Cross-Laminated Timber) ou LVL (Laminated Veneer Lumber). Dans ces matériaux, des sections individuelles de bois d’épaisseur plus ou moins grande sont assemblées pour former des poutres et des panneaux. Grâce à un tri (ou classement) préalable des éléments les constituants, les bois reconstitués présentent une meilleure homogénéité et par conséquent des performances mécaniques améliorées comparativement au bois brut, permettant de mieux maîtriser la variabilité de ces propriétés, d’accéder à une meilleure stabilité dimensionnelle et également à des éléments de grandes dimensions.

Dans ce contexte, ce projet de thèse a pour objectif de travailler à l’optimisation et l’homogénéisation des matériaux hétérogènes et variables à base de bois par stratification pour des applications structurales dans le transport.

L’objet de cette communication est de présenter la problématique, les objectifs et le programme de recherche envisagé pour cette thèse ayant débuté en octobre 2021.

Matériel et méthodes

Le premier travail sera de parvenir à mettre au point une méthode permettant une caractérisation précise des plis du composite bois (appelés placages). Cette cartographie fine des propriétés de chaque placage permet une modélisation fidèle de produits techniques reconstituées plus
complexes. Pour cela, le LaBoMaP a développé une expertise sur la mesure locale de l’orientation des fibres du bois et sa modélisation (Besseau et al. 2020, Frayssinhes et al. 2020, Viguier et al. 2018). Il s’agit de méthodes récentes avec un fort potentiel que cette thèse devra continuer à développer. On pense notamment à une meilleure représentation de l’orientation des fibres dans l’espace, nécessitant une modélisation géométrique du problème tenant compte par exemple de l’angle d’insertion des branches dans l’arbre, leur diamètre, etc.

Dans un second temps, un modèle mécanique devra être développé prenant en compte la variation des propriétés mécaniques suivant la variation de l’angle des fibres. Cette modélisation devra tenir compte des caractéristiques de densité, comme le propose les modèles de la littérature actuelle, mais aussi des caractéristiques à l’échelle micro ou nanométrique (angle de microfibrilles de cellulose). De manière peut être étonnante, la simple connaissance fondamentale des caractéristiques mécaniques d’un placage de bois en fonction de l’angle des fibres n’est pas triviale et nécessitera donc un travail de modélisation et d’expérimentation conséquent.

Résultats attendus

Comment le module et la résistance longitudinales d’une éprouvette de bois varient en fonction de l’angle des fibres, et à quel degré de précision sommes-nous capables de le savoir, constitue le principal verrou scientifique de cette thèse. L’idée est de chercher à valider ces modèles sur des bois de plus en plus hétérogènes, afin d’en déterminer les limites.

L’objectif final est d’aboutir à une modélisation d’un stratifié LVL mono ou multi-essences hautes performances en caractérisant finement ses caractéristiques mécaniques, ce afin de pouvoir proposer un matériau biosourcé fiable pour des applications de transport. Des interactions avec les partenaires du projet des laboratoires femto-ST et DRIVE permettront aussi de déterminer l’effet de l’ajout de matériaux composites en peau du stratifié sur les performances et la fiabilité du produit.

Remerciements

Ce travail est soutenu par le programme « Investissement d’Avenir », projet ISITE-BFC (contrat ANR-15-IDEX-003), et par l’ANR (projet TreeTrace ANR-17-CE10-0016-03).

Références

Développement d’une teinture naturelle pour le bois

DIAZ Léa¹, LEROYER Léo¹, FERNANI Valérie², CHARRIER Bertrand¹

¹Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Mont de Marsan, France
²API’UP 108 Avenue Jean Lartigau, 40130 Capbreton
lea.diaz@etud.univ-pau.fr

Mots clés : Teinture naturelle, colorant végétal, upcycling, bois

Contexte et objectifs
La société Api’Up, spécialiste en « upcycling » industriel, développe des activités durables autour de l’économie circulaire par le biais d’un atelier « du déchet au design », qui produit en série des objets neufs à partir de déchets de bois collectés en région nouvelle Aquitaine. En 2018, la société API’UP a souhaité collaborer avec le plateau technique Xylomatis – IPREM de Mont de Marsan, afin de valoriser des déchets industriels. Trois partenaires se sont associés au travers du projet "MATERIA" : API’UP, l’IPREM-Xylomatis et le studio de design parisien « La Racine ». L’entreprise propose une gamme de mobiliers qui s’appuie sur la valorisation éco-responsable et un procédé d’« upcycling » industriel qui permet de concevoir et de fabriquer des mobiliers neufs à partir de matières récupérées. Les travaux communs ont permis de créer une nouvelle gamme de produits à base de matière « upcyclée » et de colle bio-sourcée, tout en mettant en place un programme d’innovation dans les matières et le design produit de façon éco-responsable intégrant des travaux de R&D sur les matières et la stratégie marketing. Cela a permis à OSPHER de voir le jour, une nouvelle marque exposée à la galerie Via à Paris, et désormais sur le marché.

Un des objectifs était de proposer une offre sur le long terme afin d’industrialiser là où certaines initiatives restent au stade de la pièce unique. Ceci, afin de proposer des objets durables et garantir un mobilier conçu en France à partir d’au moins 99% de matériaux recyclés et dont l’objectif de recyclabilité visait elle aussi les 100%.

Actuellement, les applications commerciales sont essentiellement menées sur le domaine de l’ameublement et de l’objet mais d’autres applications sont déjà à l’étude.

Pour apporter une valeur ajoutée supplémentaire à ce bois « upcyclé », nous travaillons sur le projet d’une teinture naturelle végétale afin de pouvoir lui apporter une coloration tout en respectant la notion d’éco-responsabilité.

Matériels et méthodes

Matériels
Les matières premières principales sont ici végétales, il s’agit de colorants qui se présentent sous forme de poudre, issues de deux fournisseurs, Couleurs de Plantes en Nouvelle Aquitaine et Green’Ing en Occitanie. Il a été choisi de n’utiliser que des colorants issus de plantes cultivées en France afin de rester dans une démarche d’économie circulaire et d’éco-conception.

Le colorant utilisé dans le projet décrit dans cet article, est de l’extrait de châtaignier (Castanea sativa) d’Occitanie « Kingbrown » du fabricant Kingtree.

Méthodes

La méthode testée ici est celle de l’infusion, elle consiste à extraire les principes actifs d’un végétal par dissolution dans un liquide initialement bouillant que l’on laisse refroidir à température ambiante. L’eau bouillante a été versée sur l’extrait en poudre (dont les quantités de départ sont d’environ 5 grammes) puis le mélange a été agité manuellement pendant 15 minutes. Il a été choisi d’infuser
l’extrait de châtaigner dans 30 mL d’eau, selon 4 concentrations, au nombre de 3 solutions par concentration.
La suspension obtenue a été filtrée sur papier filtre standard en cellulose d’épaisseur 0,17mm et d’une porosité de 17 à 30 micromètres afin d’obtenir la solution de teinture.

Application bois : La solution obtenue a été appliquée au pinceau sur des échantillons de bois (pin maritime). Une fois la première couche sèche, une seconde couche a été appliquée sur la moitié de la surface de l’échantillon.

Application Papier : Une application a également été faite sur une feuille de papier blanc en un seul passage. 2 types d’application sur papier ont été réalisés : une avec la solution décantée en ne prélevant que le surnageant et une autre avec la solution agitée.

Analyse colorimétrique : Les mesures de couleurs ont été réalisées avec un spectrocolorimètre portable X-Rite Pantone Ci62. L’appareil a été utilisé avec le réglage du luminant D50/10 (lumière du jour) et SPIN (couleur pure). Les résultats sont donnés en code couleur du système colorimétrique L*a*b*.

![Diagramme de chromaticité](image1.png)

Fig. 1 : Diagramme de chromaticité

![Espace colorimétrique L*a*b*](image2.png)

Fig. 2 : Espace colorimétrique L*a*b*

L’espace chromatique L*a*b* CIE, généralement nommé CIELAB, est un espace colorimétrique particulièrement utilisé pour la caractérisation des couleurs de surface. Trois grandeurs caractérisent les couleurs : la clarté L* correspond à la luminance de la surface ; les deux paramètres a* et b* expriment les axes de la couleur respectivement rouge – vert et jaune bleu.
Cet espace chromatique CIELAB est défini à partir de l’espace CIE XYZ. Il présente l’avantage d’une répartition des couleurs plus conforme à la perception des écarts de couleur par le système visuel humain (CHARRIER et al. 1992 ; ALOUI et al 2006).

Vie en pot : Les échantillons ont été recouverts de parafilm pour empêcher l’évaporation et conservés à l’abri de la lumière.
Résultats et discussion

Solubilité

Quelle que soit la concentration, l’extrait de châtaigner n’est pas totalement soluble. Même après filtration à une porosité entre 17 et 30 micromètres, il reste systématiquement un dépôt insoluble après décantation. Cette partie insoluble correspond à environ 15% de la matière de départ. Cependant, la coloration du surnageant est colorée proportionnellement à la concentration de départ, malgré la présence d’insolubles.

Les solutions ont été obtenues par infusion pour ces premiers travaux. Traditionnellement en teinture végétale, le procédé utilisé est celui de la décoction c’est-à-dire de faire bouillir les matières premières dans de l’eau. Le fait de maintenir la solution à chaud pendant un temps donné permet une meilleure extraction et une meilleure solubilité des colorants (ROSE et al 2007 ; TAGHIZADEHBORJENIA et al. 2021). Pour un procédé d’industrialisation il sera donc préférable d’opter pour la méthode de la décoction. Cette phase de recherche exploratoire n’est pas terminée mais aura permis une première optimisation du procédé, et une première palette de couleurs.

Mesures de couleurs

L’observation visuelle des échantillons a mis en évidence une différence de teinte entre les veines tendres et les veines dures du bois. Les mesures de couleur ont permis de confirmer cette disparité chromatique, comme présenté dans la figure 1. Les mesures effectuées dans le temps ont permis d’observer l’évolution des teintes et l’état de conservation des solutions. Les observations des différences de clarté montrent que l’évolution est faible et que les teintes restent relativement stables et ce, quelque soit le support utilisé. Des mécanismes d’oxydation sur les composés extractibles solubilisés dans les solutions de teinte peuvent expliquer les différences observées (ALOUI et al 2006).
Conclusion et perspectives

Ce projet a montré la faisabilité de l’élaboration d’une teinture naturelle végétale pour valoriser différemment le bois upcyclé. Le procédé de l’infusion fonctionne bien avec l’extrait de châtaignier malgré une quantité d’insolubles non négligeable. Pour l’industrialisation ultérieure, il sera préférable d’optimiser le procédé, notamment en testant le système d’extraction par décoction. Ces premiers essais de formulation auront permis d’obtenir des résultats satisfaisants et sont prometteurs pour la phase d’industrialisation. Par ailleurs, des essais d’imprégnation à cœur sont en cours au laboratoire.

Bibliographie

ROSE, N.M., KHANNA, S., SING, J.S.S. Dyeing with natural colouring material- Geranium bark. Textile Trends. 2007. 49(10). 31-33

Utilisation de la spectroscopie proche infrarouge pour la prédiction de la densité de 3 essences de bois ivoiriennes.

Digbé Thomas¹, Niamké Bobelé Florence¹, Bley-atse Bley Appolinaire¹, Ramananantoandro Tahiana², Tieoulé Fabrice³, Guibal Daniel¹, Langbour Patrick³, Gelhaye Eric³, Thevenon M-France³, Chaix Gilles⁶,⁷, Adima Amissa Augustin¹, Amusant Nadine⁸

¹LAPISEN, INP-HB, Yamoussoukro, Côte d’Ivoire ²Université ’Antananarivo, ESSA Forêts, Madagascar ³biowooeb, CIRAD, France, ⁴SODEFOR Côte d’Ivoire, ⁵UMR IAM INRA, Nancy, France, ⁶CIRAD, UMR AGAP Institut, F-34398 Montpellier, France, ⁷UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France, ⁸UMR ECOFOG, CIRAD, Guyane, France

Email : digbeespoir@gmail.com

Mots clefs : densité du bois, proche infrarouge, spectroscopie, essences ivoiriennes

Contexte et Objectifs

Compte tenu de la croissance démographique en Côte d’Ivoire, les besoins de logements deviennent de plus en plus préoccupants (Kouamé Hyacinthe., 2020). La réponse à ce besoin de logements va générer à l’avenir des besoins énormes en matériaux de construction parmi lesquels le bois occupera une place importante. Par ailleurs, dans le contexte de développement durable, le bois s’impose progressivement comme un matériau de construction écologique, renouvelable et pourvoyeur d’une meilleure qualité de vie (Lenglet et Caurla 2020). Cependant, les bois utilisés dans le domaine de la construction doivent présenter des caractéristiques physiques et mécaniques satisfaisantes (bonne durabilité, bonne densité, faible rétractabilité, bonne rigidité…). Aussi, l’hétérogénéité du bois peut être un frein à son utilisation dans la construction (Mothe et al. 1990). La connaissance des propriétés du bois est donc un préalable indispensable à toute tentative de valorisation. Toutefois, l’étude des propriétés du bois nécessite un large échantillonnage dont la mise en place des essais au laboratoire est chronophage et couteuse. Afin de contribuer à une meilleure valorisation des essences ivoiriennes par une connaissance plus large de leurs propriétés, ce travail consiste à élaborer des modèles prédictifs en spectroscopie proche infrarouge permettant d’évaluer rapidement les propriétés biologiques, physiques et mécaniques de 3 essences ivoiriennes.

I. Matériel et méthodes

L’étude porte sur 3 essences à savoir Milicia excelsa (Iroko), Mansonia altissima (Bété), Nauclea Diderrichii (Badi). Trois arbres par espèce ont été prélevés en forêt. Sur chaque arbre, une bille de 1,3 m de longueur a été prélevée à partir de 1,3 m du sol. Pour chaque bille, 2 planches transversales de 4 cm d’épaisseur (noté A et B) ont été débitées. Les planches A et B ont été destinées respectivement aux essais physico-mécaniques et aux essais de durabilité.
naturelle. Ainsi 144 éprouvettes destinées aux mesures physiques et 72 éprouvettes pour les mesures mécaniques ont été débitées dans l’aubier, dans le duramen externe, dans le duramen intermédiaire et dans le duramen interne de la planche A, selon la norme NF B51-007 (1985). De même, 266 éprouvettes de durabilité naturelle ont été débitées dans l’aubier, dans le duramen externe, et dans le duramen interne de la planche B selon la norme CEN/TS-15083-1.

- Acquisition des spectres (SPIR)

Après la confection des éprouvettes, des spectres dans le proche infrarouge (SPIR) (2 spectres par éprouvette) ont été acquis sur la face radiale de chaque éprouvette stabilisée au préalable à 12% d’humidité. Les spectres ont été acquis en réflectance diffuse à l’aide d’un spectromètre microNIR développé par (Viavi Solution–Milpitas, CA, USA). Cette acquisition a été réalisée sur la gamme de 900 à 1700 nm et chaque spectre est obtenu avec une moyenne de 100 scans.

I.1.3 Analyse des échantillons par les méthodes de références

- Etudes des propriétés mécaniques

La contrainte de rupture en compression axiale, et la flexion axiale ont été effectuées respectivement selon la norme NF B51-007 (1985) et la norme NF B51-008. La mesure du module d’élasticité est effectuée à l’aide de la méthode vibratoire appelée Bing (Beam Identification by Nondestructive Grading) telle que décrite par >Segla et al. (2016).

- Etudes des propriétés physiques

Les éprouvettes ont été saturées par trempage dans l’eau distillée pendant environ 48 heures. Les éprouvettes ainsi saturées ont été pesées à l’aide d’une balance électronique. Les dimensions suivant les directions R et T à l’état saturé ont été mesurées. Le volume saturé a été mesuré sur une balance selon le principe d’Archimède. Les éprouvettes sont ensuite placées dans une enceinte climatique réglée en température et humidité relative de l’air respectivement sur 30°C - 85% Hr ; 20°C – 65% Hr ; 20°C – 30% Hr pour être ramenées successivement à une humidité du bois théorique respective de 18%, 12%, 6%. Les dimensions et la masse des éprouvettes sont mesurées respectivement à 18%, 12%, 6 % et 0%. Après cette série de stabilisation ; l’infra-densité (ID) ; l’anisotropie du bois ; le retrait radial (Rr) ; le retrait tangential (Rt), et le retrait surfacique (Rs), ont été déterminés selon la norme B.51.020.13.

II. Résultats et discussion
Prétraitement et Analyse en Composantes Principales (ACP)

Les données spectrales brutes (Fig 1) sont constituées d’informations chimiques, physiques et de bruits liés au mode de mesure et à l’électronique. Avant d’appliquer les méthodes chimiométriques, des prétraitements spectraux ont été utilisés pour améliorer le signal et corriger les effets de la diffusion de la lumière (Fig 1). L’ACP réalisée sur les spectres traités permet de distinguer les spectres de chacune des espèces et dans certains cas discriminer les types de plans ligneux. Contrairement à l’Iroko et au Bété, les spectres du Badi sont beaucoup plus homogènes (Fig 2). L’analyse statistique des données obtenues au laboratoire confirme cette observation (résultats en cours de publication).

Fig 1 : Lissage des spectres par l'algorithme de Savitsky-Golay

Etablissement des modèles

Les spectres ont été divisés en deux sous-ensembles (étalonnage et validation) en les ordonnant au préalable selon la valeur à prédire. Le jeu d’étalonnage est constitué de 3/4 des échantillons (108 échantillons) sur lesquels les modèles prédictifs ont été établis. Le jeu de validation qui permet de valider les performances du modèle sur des données non connues par le modèle est constitué des ¼ des échantillons (soit 36 échantillons). La régression PLS (Partial Least Squares régression ou Projection to latent Structures) a été utilisée pour décrire la relation entre les données spectrales NIR et les données de laboratoire. Le meilleur prétraitement des spectres est obtenu en comparant les performances de chaque prétraitement en validation croisée répétée (le coefficient de détermination R^2_{cv}, la somme des carrés des
erreurs résiduelles de prédiction en validation croisée RMSECV et le nombre de variable latente). Ensuite, le modèle est appliqué sur les spectres du jeu de validation et l’on compare les valeurs mesurées en laboratoire et les valeurs prédites en tenant compte de l’erreur de la prédiction (RMSEP), du rapport entre la variabilité de l’échantillon et la précision du modèle (RPD) et du R² de la prédiction. Pour la quasi-totalité des propriétés physiques, les valeurs obtenues pour ces paramètres valident la possibilité de prédire les propriétés physiques tableau 1 (seules les propriétés les mieux prédites sont présentées). Ces résultats sont comparables à ceux trouvés dans la littérature (Segla et al., 2017). En revanche, cette approche ne s’est pas révélée pertinente pour prédire les propriétés mécaniques et pour la durabilité naturelle du bois.

Tableau 1 : caractéristique des modèles de la régressions PLS

<table>
<thead>
<tr>
<th>Variables étudiées</th>
<th>Prétraitements</th>
<th>LVs</th>
<th>RMSECV</th>
<th>R²cv</th>
<th>RMSEP</th>
<th>R²</th>
<th>RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infradensité</td>
<td>Lissage par Savitsky-Golay</td>
<td>8</td>
<td>0,028</td>
<td>0,80</td>
<td>0,029</td>
<td>0,81</td>
<td>2,54</td>
</tr>
<tr>
<td>Retrait surfacique</td>
<td>lissage par Savitsky-Golay</td>
<td>15</td>
<td>0,502</td>
<td>0,90</td>
<td>0,472</td>
<td>0,92</td>
<td>3,5</td>
</tr>
<tr>
<td>Retrait T</td>
<td>sans</td>
<td>11</td>
<td>0,436</td>
<td>0,88</td>
<td>0,436</td>
<td>0,876</td>
<td>2,85</td>
</tr>
<tr>
<td>Retrait R</td>
<td>prétraitement lissage par Savitsky-Golay</td>
<td>14</td>
<td>0,382</td>
<td>0,73</td>
<td>0,399</td>
<td>0,684</td>
<td>1,81</td>
</tr>
<tr>
<td>PSF</td>
<td>detrend</td>
<td>9</td>
<td>0,86</td>
<td>0,851</td>
<td>0,872</td>
<td>0,847</td>
<td>2,59</td>
</tr>
</tbody>
</table>

Conclusion
L’objectif de ce travail était de mettre en évidence la potentialité du proche infrarouge à prédire les propriétés physiques, mécaniques et biologiques de 3 essences ivoiriennes à partir d’un seul modèle. La prédiction des propriétés physiques s’est révélée la plus pertinente. Notre prochain objectif sera d’étendre cette étude à la chimie du bois.

Références

Alt’R&D, collectif de d’ingénieurs-chercheurs sur des projets interdisciplinaires à l’interface entre instituts de recherche/PME

DUPLEIX Anna1,2, RUFFIO Emmanuel1,3, LAVALETTE Anne1

1Alt’R&D – CAE Co-Actions, Ferme de Maharans, 33840 Captieux
2Chercheur associée au laboratoire CRISES, Montpellier
3Chercheur associé au laboratoire TREFLE, Bordeaux
alteretd@gmail.com

Mots clefs : R&D, interdisciplinarité, collaboration, transmission, sciences du bois

Raison d’être
Alt’R&D est un collectif de 3 ingénieurs-chercheurs, Anna, Anne et Emmanuel, qui ont fait le choix de mener leur travaux de recherche ensemble en s’associant au sein d’une Coopérative d’Activité et d’Emploi, une structure née des nouvelles lois de 2014 sur l’Économie Sociale et Solidaire (ESS). Ils espèrent trouver dans ce nouveau cadre de travail un rythme de travail adapté à leurs multiples vies, l’entretien de liens forts avec les instituts de recherche dont ils sont issus et le monde des PME dans lequel Anne a travaillé, une mobilité d’esprit et de mouvement. Leurs projets sont fortement en lien à la valorisation technique du matériau bois (Anna et Anne sont toutes les deux docteurs en sciences du bois) mais pas seulement … car Emmanuel est, lui, électronicien et thermicien : l’instrumentation, le prototypage et la modélisation numérique des transferts thermiques s’invitent souvent dans leurs travaux.

Choix d’une structure - éthique et gouvernance
Les ingénieurs-chercheurs d’Alt’R&D sont des entrepreneurs. Pour développer leur activité, ils ont intégré une Coopérative d’Activité et d’Emploi (CAE) constituée en Société Coopérative d’Intérêt Collectif (SCIC). C’est la CAE CoActions, située en région Nouvelle-Aquitaine, qui héberge Alt’R&D. Cette entreprise de l’ESS (Économie sociale et solidaire) fonctionne parce que chaque entrepreneur s’implique dans la vie coopérative comme salarié, associé et participe à sa gouvernance.

Offres de compétences d’AltR&D
- Développement de produits et procédés bois.
- Recherche en lien et à l’interface PME/laboratoires sur le matériau bois et la thermique.
- Technique : Prototypage électronique (analogique, numérique), systèmes embarqués
- Diffusion et transmission de l’information scientifique dans différents milieux (entreprises, universités, grand public etc.) au travers de l’enseignement et de la rédaction d’article scientifique. Mise en réseau d’acteurs.
- Favoriser le dialogue interdisciplinaire. Entre les sciences des matériaux, sciences du vivant et sciences mécaniques (via la thermique), les sciences sociales : le matériau bois se prétant bien à ce type de programme de recherche, initié avec l’étude sur le bois de construction des ruches d’abeilles domestiques (projets Sapic, SuperBeeLive cofinancés par l’Université de Montpellier).
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Projets en cours

Revue bibliographique « Bois et Santé » pour les Techniques de l’ingénieur.

Article de synthèse sur l’impact du bois sur la santé humaine (été 2022)

Enseignement sur l’agroforesterie au sein de la formation des ingénieurs agronomes de Bordeaux Sciences Agro.

Introduction à l’influence des conditions sylvicoles en agroforesterie sur les propriétés physico-chimiques du matériau bois à partir des derniers résultats de recherche (automne 2021-2022)

Rôle du matériau bois dans la santé des colonies d’abeilles et les pratiques des apiculteurs

Projet interdisciplinaire associant instrumentation, modélisation thermique et SHS (2016-2022 et plus)

Participation au projet Arch-AI-Story, sur la création de la base de données bois (xylothèque)

En lien avec le GDR Sciences du Bois, constitution d’une base de données d’images pour l’apprentissage d’algorithmes d’Intelligence Artificielle sur la reconnaissance automatique d’essences (1ère étape : fin 2021)

Prototypage d’une caméra embarquée très basse consommation.

Avec l’entreprise Fotonower (Paris), spécialisée dans la reconnaissance d’images.

Développement et commercialisation d’outils low-tech pour la caractérisation thermique des matériaux (dont le bois !)

En lien avec Jean-Luc Battaglia (I2M-TREFLE, Bordeaux)

Conclusion

Le collectif de trois entrepreneurs que nous avons formé nous permet de fonctionner ensemble, d’être réactifs autour de projets partagés qui nous plaisent, avec des partenaires qu’on apprécie. Nous nous situons à l’interface entre plusieurs entités, instituts de recherche et PME, afin de favoriser le dialogue, les échanges et la réussite des projets sur mesure.

Remerciements

Merci à toute l’équipe de Co-Actions de nous suivre dans ce projet collectif, ainsi qu’aux différents partenaires des projets actuels de nous faire confiance dans cette entreprise.
Design et synthèse de composés amphiphiles xylo-sourcés originaux pour l'obtention d'ingrédients fonctionnels anti-oxydants et anti-prolifératifs

EID Georges¹,², VIROT-HUMEAU Catherine², CHEBIL Latifa², GERARDIN-CHARBONNIER Christine¹

¹Laboratoire d’Etudes et de Recherche sur le Matériau Bois (LERMAB), EA 4370 – USC INRA, Université de Lorraine, Faculté des Sciences et Technologies, BP 70239 Vandœuvre-lès-Nancy cedex, France
²Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, Université de Lorraine, ENSAIA, BP 20163, 54505 Vandœuvre-lès-Nancy cedex, France
gorges.eid@univ-lorraine.fr

Mots clefs : Polyphénols ; extractibles du bois ; modification chimique ; catalyse enzymatique ; acylation ; auto-assemblage ; antioxydant ; modélisation moléculaire

Contexte et objectifs

La diminution des ressources pétrochimiques, facilement accessibles, suscite, depuis ces dix dernières années, un intérêt croissant pour l’utilisation de matières premières d’origine renouvelable. La chimie bio-sourcée s’est tout d’abord fortement développée autour des agro-ressources annuelles ; elle se tourne également de plus en plus vers l’utilisation de la biomasse ligno-cellulosique issue du bois car celle-ci constitue une source de carbone renouvelable particulièrement abondante sur terre et dont l’utilisation n’entraîne pas en compétition avec les ressources alimentaires. L’industrie de première transformation du bois génère chaque année des volumes importants de déchets qui sont à l’heure actuelle, soit recyclés vers d’autres filières comme la papeterie ou l’industrie des panneaux, soit utilisés comme source d’énergie, et donc vers des marchés de faible valeur ajoutée. Le projet se situe dans ce contexte de développement durable et de valorisation des co-produits de l’industrie du bois par l’exploitation des métabolites secondaires présents dans le bois, comme les composés phénoliques, et plus précisément les flavonoïdes (Wijayanto, 2015) qui présentent en effet un intérêt pour leurs activités biologiques (Li, 2019).

Pour valoriser ces composés, leur structure a été modifiée par deux voies : chimique et/ou enzymatique (Saik, 2017) pour former des composés bi- et tri-modulaires. Pour les composés bi-modulaires, des acides gras de différentes longueurs de chaînes ont été greffés sur le flavonoïde, la catéchine (fig.1), alors que pour les composés tri-modulaires, des acides aminés ainsi que des acides gras ont été greffés. Trois structures différentes de tri-modules ont été synthétisées afin d’obtenir différents types de vecteurs. L’objectif de ces modifications est, d’une part d’exacerber leurs activités biologiques par la modulation de leur balance hydrophile / hydrophobe, pour faciliter leur passage à travers les barrières biologiques et d’autre part, de faciliter leur formulation en leur apportant des propriétés d’auto-assemblage.

Fig. 1 : Composés bi- et tri-modulaires
Matériel et méthode

Hemisynthese chimique

Les modifications chimiques sont réalisées sur la catéchine choisie comme polyphénol modèle. La synthèse du bi-module et du tri-module se fait par estérification en présence de DCCI (1 eq) et du DMAP (1 eq) pendant 20 heures. Pour les tri-modules avant l’estérification, l’acide aminé protégé est couplé à l’acide gras par amidation et ce couple est saponifié par la suite pour déprotéger et obtenir un acide carboxylique. La catéchine est protégée par benzylation pour cibler le OH aliphatique. Une fois c’est deux étapes réalisées, l’estérification aura lieu. Une hydrogénation catalytique a lieu afin de déprotéger le produit.

La purification des produits se fait par chromatographie sur gel de silice et leur caractérisation est réalisée par RMN et Infra Rouge.

Biocatalyse

Une réaction d’acylation est réalisée entre deux flavonoïdes glycosylés, la rutine et la naringine, et des acides gras de différentes longueurs des chaînes avec un ratio molaire 1 : 5, flavonoïde : acide gras dans le 2-méthyle-2-buynole. L’enzyme utilisé est la CAL-B, séchée préalablement. La réaction se fait à 100° en présence de tamis moléculaires. Une étude cinétique est réalisée par HPLC. La purification des produits se fait par chromatographie semi-préparative en colonne inverse et la caractérisation se fait par RMN et Infra Rouge.

Résultats et discussion

Hemisynthese chimique

La synthèse du bi-module se fait en une étape, estérification, où une chaîne grasse est greffée sur les groupements hydroxyles phénoliques du groupement catéchol du flavonoïde.

Cette synthèse nous permet d’obtenir un mono-ester avec des rendements entre 56 et 69%, ainsi l’obtention de faibles traces de di-ester.

Afin de comprendre la regiosélectivité de cette réaction, la réactivité de chaque groupement hydroxyde a été étudiée par modélisation moléculaire, DFT, à l’aide de la fonctionnelle B3Lyp en éliminant un proton des OH en différentes positions. La différence entre la HOMO et la LUMO, peut servir à mesurer l’excitabilité de la molécule : plus la différence d’énergie est faible, plus la molécule peut être excitée facilement, et donc plus réactive.
Les valeurs du tableau montrent que le groupement OH en position 4’ est le plus réactif, suivi des positions 3’, 3, 5 et enfin 7. Ce qui explique l’acylation directe sur la position 4’.

Plusieurs voies de synthèse sont envisagées pour obtenir les composés tri-modulaires. Trois acides aminés ont été utilisés, l’alanine, l’acide glutamique et la lysine afin d’obtenir 3 séries de molécules différentes. Avec l’alanine on obtient une structure basique avec une seule tête polaire, la catéchine, et une seule queue hydrophile, l’acide gras. En revanche avec l’acide glutamique on a deux têtes polaires, à cause de la présence de deux acides carboxyliques, et une seule queue hydrophobe. Finalement avec la lysine qui a deux groupements amides, on obtient deux queues hydrophobes et une seule tête hydrophile.

Fig. 2 : Les voies de synthèse pour les composés tri-modulaires

Le pouvoir antioxydant des produits à tester est mesuré en étudiant leur réactivité avec le DPPH. Les tests ont été effectués avec les bi-modules suivants : catéchine-C12, catéchine-C14 et catéchine-C16.

Tab. 2 : Comparaison des propriétés antioxydantes de la catéchine et de ses bi-modules contre le DPPH

<table>
<thead>
<tr>
<th>Composés antioxydants</th>
<th>IC50 (g/L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catéchine</td>
<td>2.10⁻² g/L⁻¹</td>
</tr>
<tr>
<td>Catéchine – C12</td>
<td>2.9.10⁻² g/L⁻¹</td>
</tr>
</tbody>
</table>
Catéchine – C14 \[2.9 \times 10^{-2}\text{ g/L}^{-1}\]
Catéchine – C16 \[2.5 \times 10^{-2}\text{ g/L}^{-1}\]

Biocatalyse

L’acylation de la naringine et de la rutine avec les acides gras suivants : C8 – C12 – C14 – C16 – C18 et C18 : 1 en présence de CAL-B a permis d’obtenir des esters de flavonoïde avec des taux de conversion élevés. Ce taux de conversion augmente avec l’augmentation de la longueur des chaînes pour atteindre un maximum avec l’acide myristique (C14). Au-delà de cette longueur ce rendement diminue.

![Histogramme 3. Variation du taux de conversion de l’acylation de la naringine en fonction de la longueur de la chaîne carbonnée.](image)

Conclusion et perspectives

L’acylation de la catéchine par hemisynthèse chimique a permis d’obtenir des composés bio- et tri-modulaires originaux avec des propriétés antioxydantes proches à celle de la catéchine. La biocatalyse a abouti à la formation d’esters de flavonoïde avec des taux élevés de conversion.

La tension superficielle est à tester pour les composés tri-modulaire ainsi que leur capacité à former des liposomes et des vésicules.

Références

Comparaison de la rigidité de flexion de l’arbre sur pied de deux clones d’hévéa (*Hevea brasiliensis*) de plantation

ENGONGA EDZANG Arnauld¹,², BADEL Éric¹, MOUTOU PITTI Rostand²,³, GRIL Joseph¹,²

¹ Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont–Ferrand, France
² Clermont Auvergne Université, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
³ CENAREST, IRT, Libreville, Gabon

a-clauvy_s.engonga_edzang@doctorant.uca.fr

Mots clés : *Hevea brasiliensis* ; comportement mécanique, tige

Contexte et objectifs

L’hévéa (*Hevea brasiliensis*) ou « arbre à caoutchouc » est la principale source de production de latex répondant à la plupart des besoins mondiaux en caoutchouc naturel. La production de ce latex se fait à partir de plantations industrielles notamment en Asie du sud-est (Thaïlande, Indonésie, Vietnam...) et en Afrique (Côte d’Ivoire, Nigeria...). L’hévéaculture représente aujourd’hui 10 millions d’hectares de plantation en milieu tropical humide, pour une production de plus de trois millions de tonnes de caoutchouc par an (Thaler, 2012). Cependant, comme tout système agroforestier, l’hévéaculture est très fortement impactée par la casse au vent des arbres qui génère de grosses pertes de production (Clément-Demange et al., 1995 ; Fourcaud et al., 1998). L’importance de ce problème de casse au vent est identifiée depuis longtemps par les sélectionneurs et par les planteurs (Fourcaud et al., 1998). Ces derniers ont notamment constaté qu’il y’avait plus de dommages dans certaines parcelles que dans d’autres (la parcelle étant le plus souvent monoclonale et équienne) après le passage d’une tempête. Ces observations de terrain suggèrent qu’il existe une variation inter clonale de la sensibilité à la casse des arbres.

Mécaniquement, un arbre soumis au vent est sollicité en flexion et en torsion, selon les conditions de symétrie du houppier dans le plan normal à la direction du vent (Skatter et al., 2000). L’essai de flexion d’arbres sur pied est une méthode de diagnostic basée sur la caractérisation du comportement mécanique de la tige (rigidité à la flexion et rupture de la tige). Il est basé sur la mesure de la réaction des fibres de bois (mesure de leur extension ou compression) mesurée avec un élastomètre, ainsi que la mesure de la force de traction appliquée à l’aide d’un câble et d’un tire-fort. Cette méthode permet d’avoir une estimation sur le comportement mécanique de l’arbre face au vent (Halford et al., 2008). Ce travail se propose donc de comparer la rigidité de flexion de deux clones d’hévéa (avant la mise en saignée), dont l’un est réputé sensible et l’autre réputé résistant à la casse au vent.

En raison du caractère confidentiel de cette étude, le nom des clones étudiés ne sera pas indiqué : le clone sensible à la casse sera noté CS (clone sensible) et le clone résistant à la casse sera noté CR (clone résistant).

Matériel et méthode

L’étude est menée sur un champ clonal à grande échelle de la SOGB (Société des Caoutchoucs de Grand-Béréby) au Sud-Ouest de la Cote d’Ivoire (4°40’41.4”N, 7°5’28.7”O). Des essais de
flexion ont été effectués sur 40 arbres dont 20 arbres CS (Clone Sensible) et 20 arbres CR (Clone Résistant). Les arbres sélectionnés ont tous une circonférence moyenne de 50 cm à 1 m du sol ; ce qui correspond à la circonférence de mise en exploitation des arbres. La force maximale appliquée au cours de ces essais a été limitée à environ 2 kN, pour éviter d’endommager l’arbre (Fig. 1). Cette force maximale a été estimée en se basant sur des essais précédemment réalisés lors d’une campagne expérimentale menée en 1997 (Thierry Fourcaud, communication personnelle) sur deux clones d’hévéa. Au cours de nos expérimentations, différentes mesures ont été effectuées : parmi lesquelles : (i) la hauteur des arbres, (ii) les diamètres et circonférences au niveau du point de mesure des déformations longitudinales, (iii) l’épaisseur de l’écorce, (iv) la distance entre l’arbre à tester et le point d’ancrage du tire-fort et enfin (v) l’angle du câble avec le sol (Fig. 2). Sur les 40 arbres testés en flexion, 6 ont été abattus à raison de 3 arbres CS et 3 arbres CR. Des mesures de masse nous ont permis d’estimer la masse du houppier nécessaire à la prise en compte du poids dans l’analyse des données.

Fig. 1 : Dispositif expérimental de l’essai de flexion avec les principaux appareils de mesure, l’elastomètre, l’inclinomètre et la cellule de force

Pour cette analyse nous avons développé un modèle théorique qui intègre l’ensemble des éléments pertinents entrant dans l’analyse de la configuration mécanique. Nous avons considéré l’arbre comme une poutre verticale encastrée à sa base et libre de se déplacer à son sommet. Nous faisons également l’hypothèse qu’il n’y a pas de reconfiguration des branches pouvant entraîner des effets non linéaires. Une charge F est appliquée à la hauteur z_F sur le tronc, en tirant sur un câble à l’aide d’un tire-fort attaché au pied d’un arbre voisin à une distance L_{hw} du pied l’arbre fléchi (Fig. 2). Le câble fait un angle β avec la direction horizontale. Le moment de flexion total $M(z)$ supporté par la section transversale à la hauteur z est donné par la relation suivante:

$$M(z) = F \cdot \cos \beta \cdot [z_F - z] + F \cdot \sin \beta \cdot [v_F - v(z)] + P \cdot [v(z_G) - v(z)]$$

(1)
où \(P \) est le poids du houppier, \(v(z) \) le déplacement horizontal de la section située à la hauteur \(z \), \(v_F \) le déplacement horizontal du point d’application de la force et \(v(z_G) \) le déplacement horizontal du centre de gravité du houppier.

Le déplacement \(v_F \) peut être obtenu indépendamment sur la base de la variation de la longueur de corde \(\Delta L = L_0 - L \) et de l’angle de corde \(\Delta \beta = \beta_0 - \beta \) où \(L_0 \) et \(\beta_0 \) sont les valeurs initiales de la longueur de corde \(L \) et de l’angle de corde \(\beta \), respectivement après la pré-chargement.

\[
v_F = -\Delta L \cdot \cos \beta_0 + z_F \cdot \Delta \beta
\]

Les mesures de la circonférence à différents niveaux du tronc, de masse des branches et leur hauteur sur l’arbre et de la masse du tronc permettent d’estimer \(P(z) \) et \(z_G \). Sur la base de ces données, et en utilisant le déplacement horizontal relatif \(v(z)/v_F \) et \(v_G/v_F \) à partir des équations suivantes correspondant à la flexion d’une poutre d’inertie de flexion homogène :

\[
v(z) = v_F \cdot \left[2 - (3/2) \cdot (z/z_F)^2 + (1/2) \cdot (z/z_F)^3 \right] \quad \text{si} \quad 0 < z < z_F
\]

\[
v(z) = v_F \cdot (3/2) \cdot (z - z_F)/z_F \quad \text{si} \quad z_F < z
\]

Le moment de flexion total \(M(z) \) peut ainsi être calculé et la rigidité locale \(E_L \cdot J(z) \) au niveau de la section transversale \(z \) est donnée par l’équation suivante :

\[
E_L \cdot J(z) = M(z) \cdot D(z)/\Delta \varepsilon
\]

où \(D(z) \) est le diamètre de la section, \(J(z) = \pi D(z)^4/64 \) le moment quadratique de la section, \(\Delta \varepsilon \) la différence de déformation longitudinale maximale dans la section et \(E_L \) le module d’élasticité longitudinal de la section. La déformation longitudinale \(\varepsilon \) varie de \(-\Delta \varepsilon/2\) sur la face de compression (\(Y=+D/2 \)) à \(+\Delta \varepsilon/2\) sur la face de traction (\(Y=-D/2 \)).

Fig. 2 : Schéma d’un essai de flexion d’arbre sur pied : \(H \) hauteur totale de l’arbre, \(z_F \) hauteur au point de fixation du câble sur l’arbre, \(\beta \) angle du câble avec l’horizontale, \(L_{hw} \) distance de l’arbre au point d’ancrage du tire-fort à la base de l’arbre voisin, \(\varepsilon \) déformation mesurée par l’élastomètre, \(\theta \) inclinaison du système racine-sol mesurée par l’inclinomètre, \(F \) force appliquée par le tire-fort, \(P \) poids de la couronne, \(L_0 \) longeur du câble après pré-charge, \(\Delta L \) raccourcissement de la longueur du câble.
Résultats et discussions

L’analyse des données des essais de flexion effectués sur les 40 arbres (à raison de 20 arbres par clones), nous a permis de déterminer la rigidité de flexion E_{LJ} des arbres testés. En plus de la rigidité de flexion, nous avons pu déterminer le module d’élasticité longitudinal E_L. Les graphiques en boites à moustache de la figure 3 présentent la distribution par clone de la rigidité de flexion et du module d’élasticité longitudinal. Les rigidités moyennes des troncs sont de $230,3 \pm 47,1 \text{kN} \cdot \text{m}^2$ et $237,2 \pm 35,8 \text{kN} \cdot \text{m}^2$, respectivement pour CR et CS (Fig. 3a). Les tests de comparaison de ces deux moyennes montrent qu’il n’y a pas de différence significative entre la rigidité des troncs de CR et CS (avec $p = 0,608$). Cela s’explique principalement par le fait que les arbres des deux clones ont été choisis avec les mêmes circonférences. L’absence de différence de rigidité des deux clones sur les arbres testés est également expliquée par le fait qu’il n’y a pas de différence significative entre le module d’élasticité longitudinal chez les deux clones (Fig. 3b), le module moyen du CR étant de $11,9 \pm 1,6 \text{GPa}$ et celui du CS de $11,5 \pm 1,2 \text{GPa}$.

![Fig. 3 : Variation de la rigidité de flexion (E_{LJ}) des arbres des clones IRCA41 et IRCA825. b. Variation du module d’élasticité longitudinal (E_L) des arbres des deux clones. Les valeurs de ces paramètres ont été calculées à $z = 1 \text{m}$, à partir des données de déformation mesurées lors des tests de flexion. CR = clone résistant et CS = clone sensible.](image)

Ces résultats montrent que les arbres CR et CS ont un même comportement élastique à l’échelle de la tige avant la mise en exploitation (saignée pour la production de latex) ; c’est-à-dire à diamètre comparable. Il faut cependant noter que ces deux clones n’ont pas la même vitesse de croissance et donc, n’ont pas ici le même age. Une comparaison à age égal aurait à priori fait ressortir des différences très significatives. En perspective, nous allons suivre l’évolution du comportement de ces deux clones après la mise en exploitation, ainsi que leur résistance à la flexion.

Remerciements

Références

Study of the relationship between attenuation of elastic waves and physical mechanical properties of wood for the non-destructive evaluation of wooden infrastructures

RAJAKUMARAN Vasuki¹, ESPINOSA Luis², BRANCHERIAU Loïc³

¹Master Aerospace Engineering – Structures, Ecole Centrale Lyon, France
²Institut Clément Ader, IUT de Tarbes, France
³CIRAD, UR BioWooEB, Montpellier, France

luis.espinosa@iut-tarbes.fr

Keywords: Wood – ultrasound – acoustics – non-destructive evaluation

Introduction

Wood is a privileged building material in the context of sustainable development (Skog et al. 2015). The evaluation of the quality of this material for the surveillance of wooden structures is the subject of advanced research. Among the control/diagnostic protocols, acoustic and ultrasonic methods are in a privileged position but further research is required to improve their reliability (Arciniegas et al. 2014). The wood material is complex to characterize due to its biological origin. It can be considered as an anisotropic, heterogeneous and hygroscopic material (Bodig and Jayne 1982, Espinosa et al. 2018). It is therefore necessary to study the relationships between the mechanical and physical characteristics of wood, and the corresponding acoustic properties. Here we are particularly interested in the viscoelastic behavior of wood and the attenuation of elastic waves under acoustic and ultrasonic testing.

The objective of this study is to evaluate the effect of the variation of physical-mechanical properties of wood associated with structural deterioration, such as the modulus of elasticity (MOE), and density, on the attenuation of acoustic waves propagating in wood. A large variety of wood samples were tested using two methods based on either acoustic or ultrasonic excitation, and relationships between different physical and mechanical parameters were established.

Materials and methods

Samples from 58 tropical wood species from CIRAD’s wood collection were tested to cover a broad range of densities, ranging from 205 kg/m³ to 1287 kg/m³. Samples were stabilized in a climate-controlled room with 65% relative humidity and a temperature of 20°C, with a theoretical moisture content at equilibrium of 12%. The samples geometry corresponded to bars of 2.5-by-2.5 cm cross section for two different lengths along the longitudinal axis: 39 cm for the acoustic tests and 15 cm for the ultrasonic tests.

For acoustic tests, BING® device was used (Brancheriau et al. 2010), relying on a free-vibration analysis to estimate the MOE and the loss tangent (tan δ) associated to internal friction. For the MOE, depending on the impact orientation, the test was either in bending (transversal test) or in compression (longitudinal test, Fig. 1 and 2).

For ultrasonic tests, a through-transmission configuration was used (Fig. 3), with sensors at a resonant frequency of 500 kHz (Fig. 4), allowing to estimate MOE using the wave velocity information and the attenuation measurements, tan δ and attenuation coefficient α, from the amplitude information.
Results

Considering the MOE measurements, a first comparison was made between the values obtained in compression and bending for the acoustic tests (Fig. 5), showing a good agreement from the two configurations. Values ranged from 6152 MPa to 27663 MPa in bending and from 5225 MPa to 29322 MPa in compression. MOE measurements from ultrasonic tests ranged between 5271 MPa to 33532 MPa. Fig. 6 presents the comparison between the MOE measurements obtained from the ultrasonic and acoustic (bending) tests, showing also good agreement, presenting slightly higher values for the ultrasonic case.
With respect to the attenuation measurements, again a first comparison was made between the tan δ values obtained from acoustic tests in compression and bending (Fig. 7), leading to a R^2 of 0.89 and therefore a good agreement as for the MOE measurements. In the case of ultrasonic tests, tan δ values were larger (by a factor close to 9) compared to the acoustic ones considering that the attenuation increases with frequency, as shown in Fig 8.

Also, MOE and the attenuation coefficient α from the ultrasonic measurements were compared to the density of the samples. In the case of the MOE (Fig. 9), larger values were found for species with higher density. For the attenuation coefficient α the relationship was the opposite (Fig. 10), with decreasing values as the density of the sample increased.
Conclusions
The viscoelastic behavior of wood was studied through a set of experiments using acoustic and ultrasonic methods. Good agreement was observed for the MOE and tan δ obtained either by comparing compression and bending in the acoustic case, or by comparing ultrasonic and acoustic measurements. Density is a key parameter affecting MOE and attenuation. Numerical modeling techniques could help to study the effect of the wood anatomy in the propagation of elastic waves.

References
Impact du transfert simultané masse-chaleur dans la mesure de la conductivité thermique d’isolants biosourcés

FLOREZ Daniela¹, STEPHAN Antoine¹, RÉMOND Romain¹

¹ LERMAB, Université de Lorraine, ENSTIB, 88051 Epinal, France
daniela-carolina.florez-parra@univ-lorraine.fr

Mots clefs : conductivité thermique ; isolant de fibres de bois ; transferts masse-chaleur ; méthode fluxmétrique ; simulation numérique

Contexte et objectifs

La conductivité thermique des matériaux et produits pour le bâtiment est évaluée à l’aide de méthodes en régime permanent du type plaque chaude gardée et fluxmétrique, ou en régime transitoire à travers des techniques telles que le fil chaud et le hot-disk. Dans le cas des matériaux biosourcés hygroscopiques, comme par exemple les panneaux isolants en fibres de bois, la conductivité thermique apparente perçue par les appareils de mesure diffère selon le régime de la méthode utilisée. Actuellement, ces produits sont caractérisés par une méthode en régime permanent conforme à la norme EN 13171. Cependant, à ce jour, il ne semble y avoir un consensus sur la méthode la plus appropriée.

La méthode en régime transitoire consiste à chauffer l’échantillon localement de manière unidirectionnel suivant son épaissseur et sur un temps relativement court (inférieur à 30 min). Grâce à cette rapidité, le champ d’humidité dans l’échantillon est peu affecté. En revanche, dans la mesure en régime permanent, l’échantillon est soumis à une différence de température qui induit un flux thermique à travers son épaisseur jusqu’à atteindre l’état stationnaire (plusieurs heures). Au cours de cette mesure, le profil d’humidité au sein de l’échantillon est modifié et l’apparition des transferts simultanées de chaleur et de masse influencent la mesure de la conductivité thermique, contrairement à la mesure en régime transitoire plus courte.

La contribution dans cette communication consiste d’une part, à simuler une expérience de type méthode fluxmétrique couramment utilisée pour la mesure de la conductivité thermique de panneaux isolants en fibres de bois. D’autre part, à quantifier l’effet des transferts simultanées de chaleur et de masse sur ce type de mesure et à travers l’évaluation des paramètres tels que la teneur en eau locale, la densité et l’épaisseur du produit.

Méthodes

Mesure de la conductivité thermique (λ) par la méthode fluxmétrique

Fig. 1 : Méthode fluxmétrique de mesure de la conductivité thermique en régime stationnaire

Le principe de cette méthode consiste à placer un échantillon d’épaisseur à l’contact entre une plaque chaude (de température) et une plaque froide (de température) et de mesurer le flux de chaleur induit . Le maintien des conditions aux limites constantes () permet d’effectuer la mesure en régime permanent (Fig. 1). Les conditions expérimentales sont menées...
de manière à avoir un transfert de chaleur monodimensionnel dans la zone centrale de l’échantillon où est mesuré le flux. Des transducteurs de flux sur les plaques permettent de quantifier la densité du flux de chaleur traversant l’échantillon.

Une fois l’état stationnaire atteint au niveau thermique, la conductivité thermique apparente λ_{app} est déterminée par l’équation (1):

$$\lambda_{app} = \frac{\varphi \cdot e}{(T_c - T_f)}$$

(1)

Calcul de la conductivité thermique locale du milieu fibreux

La conductivité thermique locale λ_{loc} va dépendre des fractions volumiques des différentes phases, solide (s), liquide (l), gaz (g) présentes dans le matériau et de leur conductivité respective λ_i. En intégrant toute la complexité de la morphologie du milieu poreux dans une constante μ, la conductivité locale du milieu a pu être estimée par Louërat et al. (2017) pour les panneaux de fibres de bois et par Perré et Turner (2001) pour l’Épicéa (équation 2):

$$\lambda_{loc} = \left(\varepsilon_g \lambda_g^\mu + \varepsilon_s \lambda_s^\mu + \varepsilon_l \lambda_l^\mu \right)$$

Typiquement, les valeurs du λ de chaque phase utilisées dans le calcul sont respectivement $\lambda_g=0.023$ W/m.K, $\lambda_s=0.5$ W/m.K et $\lambda_l=0.6$ W/m.K (Siau 1995 ; Ngoe-Ekam et al. 1994). Les fractions volumiques sont évaluées en utilisant les expressions de Perré et Turner (2001). Selon le type de matériau, le facteur μ peut varier entre 0.22 pour des panneaux type MDF et jusqu’à 0.6 pour le bois massif (Louërat et al. 2018, Perré et Turner 2001). Pour une même gamme de matériaux (bois massif ou panneaux de fibres ou particules, etc.), le facteur μ est ajusté en minimisant l’écart entre les valeurs des mesures expérimentales de conductivité thermique et celles prédites par la loi de mélange.

Simulation numérique de la méthode fluxmétrique

La simulation des transferts masse-chaleur dans l’isolant en suivant le mode opératoire de la mesure de type fluxmétrique selon la norme EN 12667 et de la certification ACERMI a été effectuée. Le modèle numérique TransPore (Perré et Turner 1999) dans sa version unidimensionnelle a été utilisé avec l’implémentation de la loi de mélange précédente. Les résultats de mesure sont déterminés à 10°C avec des conditions aux limites de Dirichlet imposées aux niveaux des plaques de $T_c=17.5^\circ$C et $T_f=2.5 ^\circ$C.

La valeur de flux de l’équation (1) est déterminée dès que le critère de régime stationnaire thermique est atteint. La conductivité thermique apparente peut ensuite être estimée via la même équation. Le matériau est supposé isolé au niveau des échanges de vapeur d’eau (flux massiques nuls) avec son environnement extérieur, de manière à avoir une humidité globale du panneau constante au cours de l’essai.

Différentes densités et épaisseurs d’isolants ont été testées. Chaque résultat de λ_{app} est comparé à une configuration sans transfert massique simultanée ($\lambda_{intrinsèque}$), c.à.d. sans gradient d’humidité lors de l’expérience.
Résultats et discussion
Dans la Figure 2 sont représentés les résultats de la simulation d’une expérience de mesure de type méthode fluxmétrique pour un panneau en fibres de bois de 35mm d’épaisseur, 150 kg/m3 de densité et 7.5% de teneur en eau initiale (masse d’eau/masse de matière sèche). Cette teneur en eau correspond à l’humidité en équilibre d’un panneau conditionné avant essai à 20 °C et 50% d’humidité relative. Les conditions non-isothermes induisent une redistribution de l’humidité dans le panneau avec un flux d’humidité allant du coté chaud vers le coté froid. La Figure 2a montre le séchage du côté de la source chaude ($e = 35$ cm) et l’humidification du côté de la source froide ($e = 0$ cm).

Fig. 2 : Evolution du champ de teneur en eau (à gauche) et de la conductivité thermique locale (à droite) dans l’épaisseur d’un panneau lors de la mesure fluxmétrique. Les différentes courbes montrent l’évolution depuis le début ($t_{initial}=0$) et jusqu’à la fin de la mesure (t_{final}) où le système a atteint l’état stationnaire.

Fig. 3 : Flux de chaleur au niveau des plaques (en valeur absolue) pendant la mesure fluxmétrique.

Au bout de 5 heures (t_{final}), le champ d’humidité évolue du profil plat initial ($t_{initial}$, 7.5% d’humidité) vers un gradient d’humidité allant de 6% à 9.5% entre les deux plaques. En raison de sa dépendance avec l’humidité via l’équation 2, il y a également un profil de conductivité thermique (Figure 2b). La Figure 3 montre les flux de chaleur perçus au niveau des plaques (en valeur absolue). La conductivité thermique « apparente » est estimée lorsque le critère d’état stationnaire thermique est atteint (Eq.1).
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Effet de la densité et de la teneur en eau sur la mesure de λ

La variation de λ_{app} des panneaux de fibres avec différentes densités (75, 150, 225, 500 kg.m$^{-3}$) et 6 cm d’épaisseur, a été modélisée pour des teneurs en eau initiales comprises entre 0 et 20%. L’amplueur de l’impact du transfert de masse sur le transfert de chaleur est quantifiée ici par la différence entre λ_{app} et $\lambda_{intrinsèque}$. Les valeurs de $\lambda_{intrinsèque}$ (sans gradient d’humidité) pour chaque densité sont reportées dans le Tableau 1.

Comme il est constaté dans la Figure 4, l’effet du transfert massique de vapeur d’eau conduit à une surestimation de la conductivité thermique qui est d’autant plus importante que la teneur en eau et la densité sont élevées. Sur la plage de teneur en eau étudiée, cette surestimation semble varier entre 5.6% et 26% selon la densité (75 - 500 kg.m$^{-3}$). D’autres simulations ont démontré qu’en augmentant de 6 cm à 12 cm l’épaisseur d’un panneau de 150 kg/m3 et 6% de teneur en eau initiale, la conductivité thermique serait surestimée de 1.1 mW.m$^{-1}$.K$^{-1}$.

Tab. 1 : λ « intrinsèque » de panneaux de fibres de bois de différentes densités ($e = 6$ cm)

<table>
<thead>
<tr>
<th>Masse volumique (kg.m$^{-3}$)</th>
<th>75</th>
<th>150</th>
<th>225</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{intrinsèque}$ (mW.m$^{-1}$.K$^{-1}$)</td>
<td>0.029</td>
<td>0.037</td>
<td>0.047</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Conclusion et perspectives

L’impact des transferts simultanés de chaleur et d’humidité apparaissant lors de l’expérience de type fluxmétrique a été étudié dans ce travail pour des isolants hygroscopiques tels que les panneaux de fibres de bois. Les simulations montrent que la conductivité thermique apparente mesurée par le fluxmètre est surestimée par rapport sa valeur intrinsèque d’autant plus que le produit testé est dense, épais, et que sa teneur en eau initiale avant le test est élevée. La modélisation a permis de quantifier cet effet à travers quelques exemples concrets et la validation expérimentale de ces résultats est dans la perspective de travaux à venir.

Remerciements

Références

Mots clefs : LVL, CP, déroulage, placages, traçabilité

Contexte et objectif

Brugère et le LaBoMaP ont engagé une collaboration structurante depuis décembre 2015 au travers du Laboratoire Mixte public/privé BOPLI. Deux objectifs principaux avaient été identifiés :

- Axe 1 : Amélioration de la qualité des placages et maîtrise du processus de 1ère transformation
- Axe 2 : Maîtrise du procédé de seconde transformation (fabrication panneaux contreplaqués) et innovations produits.

Lors des quatre premières années du projet BOPLI, les efforts se sont portés sur ces deux axes de façon assez comparables en permettant de mieux maîtriser le process de fabrication des panneaux de contreplaqués fabriqués (investissements et contrôle des propriétés des panneaux) et sur la mise en place d’un suivi des placages en production afin d’en limiter les défauts avec notamment la mesure de leur ondulation.

Depuis deux ans, Brugère a remodelé sa stratégie en uniformisant davantage les formats déroulés pour limiter les encours et les stocks. Cette démarche doit permettre à terme de réduire les difficultés d’approvisionnement en élargissant le panel des bois transformables. En revanche, cela nécessite une grande agilité sur les lignes de déroulage pour optimiser le rendement (en termes de volume et de qualités). Cette approche s’inscrit pleinement dans la maîtrise d’un procédé complexe très sensible à la variabilité de la ressource locale.

Ce contrat, créé dans le cadre du plan de relance (action 4 embauche jeune docteur), a pour objectif de structurer le secteur R&D de BRUGERE et de mieux maîtriser la fabrication et la qualité des produits (placages et panneaux). Pour le LaBoMaP et AMVALOR, cette association permettra au travers d’un contrat d’ingénieur docteur R&D (24 mois) et de stages d’élèves ingénieurs de poursuivre les développements scientifiques engagés sur la maîtrise du processus de fabrication par déroulage et la fabrication de produits d’ingénierie à base de bois locaux.

Les travaux en cours dans le premier axe de recherche portent sur le suivi de production et la traçabilité du bois au sein de l’entreprise.
Matériel et méthode

Actuellement, des outils de suivi de production sont en cours de développement. Ces outils permettront une gestion optimisée de la quantité de placage humide et permettront d’avoir une remontée des informations de productions améliorée.

Afin d’assurer la traçabilité de matière, un prototype de mesure de la forme du billon permettra d’identifier l’origine, la provenance et la qualité des billons au moment du déroulage.

Par la suite, tous les placages seront photographiés dans le but de construire une empreinte « digitale » des placages (voir Fig. 1). Ceci permettra de connaître la qualité des placages (sortie du séchoir) en fonction de la qualité des grumes et ainsi identifier l’influence des types de sylviculture, des placettes, des conditions d’étuvage et des paramètres de déroulage afin d’améliorer la qualité des produits finis.

Fig. 1 : Identification d’une empreinte « digitale » sur un placage

Résultats et discussions

Ces méthodes de mesure sont en cours d’implantation dans la ligne de production de la société BRUGERE. Ainsi, l’accès à une quantité massive d’informations permettra d’identifier les facteurs impactant la qualité des placages sur des données représentatives de la ressource.

Remerciements

Cette étude est réalisée dans le cadre plan de relance du gouvernement cofinancé par la société BRUGERE et l’ENSAM.
Proposition d’une méthode de conception-fabrication pour l’architecture en bois. Application du procédé de Stratoconception®

FRECHARD Victor¹, BLERON Laurent¹, MEYER Julien²

¹Université de Lorraine, LERMAB, F-54000 Nancy, France
²Ecole Nationale Supérieure d’Architecture de Nancy, MAP-CRAI, F-54000 Nancy, France

victor.frechard@nancy.archi.fr

Mots clefs : Architecture paramétrique ; Stratoconception® ; fabrication numérique ; panneaux de bois.

Contexte et objectifs
Le développement d’une fabrication numérique en construction bois et l’émergence d’une gamme de produits d’ingénierie bois, tels que les panneaux de bois, favorisent depuis une vingtaine d’années l’essor d’une architecture bois moderne (Menges, 2017). Ces outils et produits facilitent par leur adaptabilité, l’apparition d’architectures et typologies constructives non-standards matérialisant des géométries complexes, résultats d’une morphogénèse répondant à des critères de performances (Kolarevic, 2003) ou à une expressivité architecturale accrue. Le défi proposé par cette complexité formelle donne lieu à l’apparition de nouvelles tectoniques (Weinand, 2005), réinterprétations de systèmes constructifs anciens par le numérique.

La décomposition d’un modèle en éléments plans de faibles sections juxtaposés est une méthode qui s’est avérée efficace et convaincante (Iwamoto, 2009) pour la réalisation d’architectures non-standards, basées sur l’empilement de strates en panneaux de bois au profil usiné décrivant la morphologie dessinée. A l’heure où les procédés de fabrication additive connaissent un développement rapide dans le secteur de la construction (Labonnote, 2016) en se reposant sur des principes similaires, la stratification en architecture bois se limite à des architectures éphémères et sculpturales, dénotant l’absence de méthodologie de conception-fabrication et d’optimisation des processus associés à ce type d’architecture.

La Stratoconception®, procédé de fabrication additive breveté par le CIRTES, facilite la réalisation de pièces aux morphologies complexes extérieures comme intérieures, par des moyens techniques simples comme l’usinage par machine à commande numérique trois axes (Barlier, 1991 ; Barlier et Bernard, 2020). Il consiste à décomposer numériquement une pièce en une série de couches élémentaires et complémentaires appelées strates, usinées dans des matériaux en plaques puis assemblées de manière à recomposer la pièce initialement dessinée (Fig.1). Bien qu’absent de l’industrie de la construction bois, sa forte adaptabilité à des parcs machines et l’utilisation de panneaux de bois, produits accessibles et industrialisés, renforce le fort potentiel que présente l’intégration de ce procédé dans un contexte d’une conception-fabrication architectural.

Ce contexte fonde ces travaux de thèse dont l’objectif est ainsi de montrer l’intérêt, les potentiels et les limites du procédé de Stratoconception® pour l’architecture et la construction bois. Une méthode de conception-fabrication adaptée à l’utilisation de ce procédé dans le contexte des contraintes du secteur de l’architecture et de la construction bois sera proposé à travers cette recherche. Cette communication permet de positionner ces travaux de thèse et de discuter les premiers enjeux relevés.
Matériel et méthodes

Suite à cette analyse, un modèle théorique sera ainsi formalisé sur la base des données recueillies et se positionnera comme une proposition de méthode de conception-fabrication, par le procédé, adaptée à l’architecture bois dans un contexte paramétrique. La réalisation d’un prototype final visera la validation de ce modèle théorique.

Ces travaux seront réalisés avec le soutien du CIRTES, détenteur du brevet et développeur du procédé de Stratoconception®, et d’entreprises de la construction bois, partenaires de la Chaire « Architecture et Construction bois : du patrimoine au numérique ».

Premiers résultats et discussion

Un état de l’art approfondi des méthodes et outils associés au procédé de Stratoconception® permet de dégager les premiers verrous de son application en architecture et construction bois. Les méthodes de conception intégrée, mises en exergue par une architecture paramétrique, permettent aux architectes, ingénieurs et constructeurs de collaborer sur des projets dès le début de la conception en faisant la synthèse des caractéristiques des matériaux, performances structurelles et moyens de fabrication. L’intégration de la Stratoconception®, procédé de fabrication, et de ses contraintes en conception est nécessaire pour que l’architecte puisse apprécier l’ensemble des potentiels de liberté formelle offerts. La traduction des données, entre architecture, ingénierie et fabrication est alors un réel enjeu à l’emploi du procédé. L’utilisation du format maillé triangulaire STL par le logiciel associé au procédé, pauvre en données, rompt avec l’idée de continuum numérique sous-jacent à une conception intégrée et entraîne une perte de définition des géométries modélisées par des courbes ou surfaces NURBS en CAO. Si cette problématique est abordée par le projet C-Fast destiné au logiciel de conception mécanique.
TopSolid, développé par Missler Software, aucune solution n’existe pour des logiciels de conception architecturale.

L’ingénieur, pour sa part, doit être en mesure de concevoir un modèle de simulation numérique adéquat, justifiant des performances structurelles de l’architecture et rendu complexe par le caractère non-standard de cette dernière et par le manque de méthodes référencées.

Utilisant des panneaux de bois peu ou pas orientés, considérés comme homogènes pour des applications sans contraintes fortes, le procédé de Stratoconception intègre peu les caractéristiques intrinsèques du matériau dans son outil numérique de FAO. La maitrise de l’angle du fil du bois et sa continuité entre strates permettra de répondre à des contraintes structurelles dans le cas de réalisation d’éléments porteurs ou esthétiques, dans le cas de menuiseries ou d’éléments d’agencement. De même, l’anisotropie et l’hétérogénéité du bois ne sont pas considérés dans les stratégies d’usinage où les panneaux de bois sont considérés comme tout autre matériau homogène. L’adaptation de l’usinage aux propriétés du bois amènerait une finition des pièces accrue (Starikov, 2020), évitant de lourds travaux de ponçage relevés dans les projets d’architectures stratifiées comme lors de la réalisation de la sculpture Body de l’architecte Gregor Eichinger en 2015.

L’intégration des caractéristiques du procédé en conception, le traitement des flux de données entre conception et fabrication, la mise en place d’une simulation mécanique adaptée, le changement d’échelle du procédé et l’intégration des caractéristiques intrinsèques du matériau bois sont ainsi autant de facteurs nécessaires à l’adoption d’une fabrication par Stratoconception® en architecture et construction bois. Basée sur l’usinage de matériaux en plaques par machines à commandes numériques, la Stratoconception® possède un fort potentiel d’intégration dans les entreprises équipées. L’appropriation de ces technologies par les entreprises de charpente, de menuiserie ou d’agencements offre un fort potentiel à ce procédé dans la construction bois, sans nécessiter des investissements conséquents.

Conclusions et perspectives

Ces premières observations permettent d’apprécier les enjeux liés à l’adoption du procédé de Stratoconception® en architecture et construction bois. La phase d’expérimentation, débutant, nous permettra d’enrichir notre connaissance de l’emploi de ce procédé dans un processus de conception et fabrication numérique architectural et d’en démontrer tout le potentiel. La levée de verrous identifiés facilitera cette démarche et participera à la proposition et la validation d’une méthode de conception-fabrication pour l’architecture en bois basée sur système constructif non-standard, la Stratoconception®.
Références

Etat de l’art du sciage courbe en merranderie : méthodes et perspectives

GENTY Clément

1Famille Sylvain, Château La Perrière, 33570 Lussac
2Arts et Métiers Sciences et Technologies, LAMPA, HESAM Université, F-53810 Changé, France
cgenty@famillesylvain.com – clement.genty@ensam.eu

Mots clefs : merranderie ; tonnellerie ; fil du bois ; sciage courbe ; filière bois ; scie à ruban ; robotisation sylvicole.

Résumé

La merranderie est une activité millénaire faisant partie intégrante de la filière bois française. Adossée usuellement à la tonnellerie, l’activité de ce type de structure est la réalisation de merrains suite à l’abattage de chênes sessiles (Quercus petraea (Matt.) Liebl., 1784) et pédonculés (Quercus robur L., 1753). Le bois étant une matière anisotrope, il est impératif de s’intéresser à ses particularités intrinsèques afin de réaliser des pièces de bois à l’attention de conteneurs qui doivent être étanches. Pour se faire, il convient de suivre le fil du bois et d’optimiser la matière. Vient alors l’étape du sciage courbe, endémique de la profession, mais néanmoins peu étudiée. Cette étude se veut de dresser un état de l’art sur le sujet.

Introduction

La tonnellerie est historiquement un métier complémentaire du viticulteur. Ce dernier durant les périodes creuses de ses cultures, acquérait des grumes, réalisait des merrains et produisait des barriques. La technicité de la profession ainsi que la possibilité de travailler avec les deux hémisphères permettent aujourd’hui à la tonnellerie d’être un secteur professionnel à part entière. La merranderie, par extension, est née de cette réalité et contrairement à la scierie, fend les billons en quartiers afin de suivre le fil du bois. Cette opération est nécessaire et est la seule technique sérieuse permettant de respecter le fil du bois [Rémy, B., 1991].

Ces quartiers sont ensuite sciés par des opérateurs ayant comme objectif d’optimiser les pièces de chêne, en prenant en considération la forme, le fil et les défauts du bois. D’après ce que nous avons constaté et de ce que nous vivons, le sciage de ces quartiers s’opère usuellement à l’aide d’une scie à ruban, technologie datant du 29 août 1846 et inventée par Pauline Crépin [Crépin, P., 1846]1.

Fig. 1 : brevet d’une « scie perpendiculaire ou horizontale dite sans fin, à table oscillante à l’usage du sciage de bois chantourné et en ligne droite » - 1BB4172

1 Plusieurs sources indiquent le britannique William Newberry comme inventeur de la scie à ruban, trente-huit ans plus tôt. Nous n’avons pu trouver le brevet concerné. S’agit-il d’une Kryakutnoy ?
Factuellement, l’opérateur se saisit du quartier, fruit de la fente du billon, l’analyse et la scie. Les pièces de bois ainsi générées sont déliées, apliées (empilées) en palettes selon la pratique bordelaise ou en cheminée selon la méthode bourguignonne. Les deux méthodes sont historiques, argument de poids dans un secteur qui l’est tout autant [Wernsdörffer, H. et al., 2016]. Les merrains subissent alors les effets naturels des évolutions de température, d’hygrométrie et de temps (pluie, ensoleillement, vent, grêle, gel, …) selon une durée variable : un an par centimètre d’épaisseur, 12, 18, 24, 27 ou 36 mois, selon les praticiens [Taransaud, J., 1976] [Rémy, B., 1991] [Jourez, B. et al., 2003]. Cette étape est dénommée maturation.

Problématique du procédé

La merranderie est une activité physique qui fait appel aux limites physiques de la condition humaine. Le sciage de quartiers de bois de fil non droit nécessite de la part des opérateurs de se saisir de pièces pesant en moyenne 15 kilogrammes, d’après nos statistiques internes. Ce même opérateur inspecte la pièce en la faisant tourner manuellement afin de trouver le meilleur sciage possible. La pièce est ensuite posée sur un convoyeur qui est acheminé manuellement jusqu’à la lame de la scie à ruban. Cette opération est similaire à celle présente sur la photographie suivante, anonyme, datant de 1946. A droite une vue actuelle, avec l’utilisation de LASER, seule actualisation de la méthode.

Fig. 4 & 5 : sciage contemporain dans les ateliers de la merranderie Sylvain bois

Fig. 2 & 3 : empilement des merrains selon la méthode bordelaise (g) et bourguignonne (d)

2 Photographie Tonnellerie Sylvain – © Pascal Xicluna/Min.Agri.Fr
3 Photographie Tonnellerie Meyrieux – © Armelle Hudelot
4 D’après un calcul faisant appel à la masse volumique du bois, au nombre de fentes moyennes ainsi qu’à la longueur type des billons.
Ce procédé, simple et peu onéreux, fatigue les employés qui n’ont pas la même capacité d’analyse au cours de la journée, après des efforts physiques répétés. Le travail est certes assuré mais outre des problèmes de productivité, la santé humaine est en jeu et les accidents peuvent arriver. L’inspection du travail intervient en tolérant cette pratique, constatant de fait qu’aucune solution alternative n’existe. En interne, nous considérons ce manque en raison de l’absence d’intérêt de la part des industriels, ce secteur d’activité étant trop marginal.

Le questionnement associé à la productivité est aujourd’hui d’actualité lorsque l’on observe lors des ventes annuelles des prix élevés, augmentant sans cesse depuis plusieurs années. Il convient d’optimiser.

Force est de constater que la problématique est posée et que les hommes et les femmes de la profession réfléchissent au sujet. Un groupe de travail éponyme existe au sein du Syndicat des Mérandiers de France, pour l’instant aucune solution n’a été trouvée.

Projets émergeants

Compétitivité des merranderies, secret industriel et faiblesse de communication de l’industrie sont des raisons pouvant expliquer la faible connaissance du sujet. Si des merranderies de tailles importantes peuvent se doter d’un département recherche et développement en interne, ce n’est pas le cas de petites structures peu excédentaires et ne disposant pas de ce type de compétence.

Nous pouvons observer néanmoins trois études de professionnels du secteur :

- Frédéric Voisin, directeur de la tonnellerie Bel Air, en 1997 [Voisin, F., 1997];
- Société Raoul Monnot, en 2018 [Casier, O., 2018];
- Société CITF, en 2021 [CITF, 2021].

Néanmoins, si ces procédés se veulent répondre à la problématique donnée, nous pensons que les mécaniques en jeu ne sont pas à la hauteur de la courbure si particulière des bois tors. De ce fait, il convient d’associer préhension et vision afin de scier selon le fil, tout en maintenant la pièce de bois. Ces deux paramètres si particuliers ne semblent se concilier, nous le pensons, que par le biais d’un bras robotisé dit robot six axes. Aucune solution commerciale n’existe.

Conclusion

Cet état de l’art nous a permis de dresser un déroulé portant sur la problématique de sciage courbe, existant depuis le début de la merranderie. Cependant, force est de contacter que si des évolutions technologiques existent, nulle n’est aujourd’hui capable de répondre au sciage du bois tors. Une citation apocryphe attribuée à Clément Ader (1841-1925) lui faisait dire « sera maître du monde, qui sera maître de l’air ». Alors concluons par une semblable : « sera maître de la merranderie, qui saura scier courbe ».

Références

Crépin, A. P. (1846) Brevet français 1BB4172 - scie perpendiculaire ou horizontale dite sans fin, à table oscillante à l’usage du sciage de bois chantourné et en ligne droite

Goertz, R. C. et al. (1955) Brevet étasunien US2846084A - Electronic master slave manipulator

10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

De la branche à la molécule : une nouvelle source de bois de nœuds valorisable pour le marché de la cosmétique ?

Gérardin Pauline1, Vinchelin Pierre1, Coralie Audoin3, Dumarçay Stéphane1, Fleur Longuetaud2, Frédéric Mothe2, Colin Francis2, Gérardin Philippe1, Gérardin-Charbonnier Christine1

1 Université de Lorraine, INRAE, LERMAB, Faculté des Sciences et Technologies, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France

2 INRAE, AgroParisTech, Université de Lorraine, SILVA, Route d’Amance, 54280, Champenoux, France

3 Laboratoires CLARINS, 5 rue Ampère, 95300 Pontois

pauline.gerardin@univ-lorraine.fr

Mots clefs : bois ; branches ; connexe ; extrait ; nœud ; cosmétique ; valorisation

Introduction

Cette étude se situe dans le cadre du projet ExtraFor_Est et du projet ResiNoeud et permet de faire la jonction entre la ressource bois et l’application cosmétique.

Le projet ExtraFor_Est a pour but d’évaluer la quantité et la qualité des composés chimiques présents dans 5 essences d’intérêt économique du Grand Est et de Bourgogne Franche Comté dont l’épicéa, le sapin et le Douglas, tandis que le projet ResiNoeud, a pour objectif de créer de nouvelles applications à forte valeur ajoutée basée sur la valorisation de co-produits de l’industrie du bois, et plus particulièrement des nœuds, pour la production d’ingrédients et de cosmétiques naturels anti-âge intégrant une activité antipollution dans un contexte du développement durable et de l’économie circulaire.

En effet, les consommateurs sont aujourd’hui de plus en plus désireux d’utiliser des produits plus naturels. Les extractibles du bois sont des molécules de faible masse moléculaire présentant une grande diversité de structures chimiques et de propriétés biologiques pouvant donner lieu à différentes possibilités de valorisation dans les domaines pharmaceutiques, nutraceutique ou encore cosmétique, notamment grâce à leurs propriétés antioxydantes ou antibactériennes (Willför et coll. 2003 ; Bukke et coll. 2015).

Le vieillissement de la peau (derme et épiderme) serait dû au stress oxydatif, qui implique des molécules réactives liées à l’oxygène (Reactive Oxygen Species - ROS) et qui endommagent l’ADN ou encore les composants des membranes cellulaires. Ce ne sont cependant pas des composés nocifs, puisque nous en avons besoin lors de la communication cellulaire. Le problème principal est que ces ROS sont produits en excès lors d’un stress oxydatif et notre système n’arrive alors plus à maintenir l’équilibre. Les antioxydants exogènes sont donc précieux pour nous aider à lutter contre les radicaux libres. Ils ont pour rôle d’inhiber l’oxydation et d’éliminer les radicaux libres en excès. Les antioxydants en cosmétiques peuvent aussi être utilisés pour protéger la formule du produit et ainsi éviter son oxydation. De plus, l’activité antibactérienne pourrait également être bénéfique en termes de...

Cependant, le prolongement du nœud dans les premiers centimètres de la branche pourrait constituer une source supplémentaire de matière première pour l’obtention molécules d’intérêt. Il a été observé que la masse volumique du bois des branches est bien plus élevée dans à proximité du tronc et qu’elle diminue au fur et à mesure que l’on s’éloigne du tronc (Billard et coll. 2019). C’est pourquoi, il a semblé intéressant d’étudier la variation des taux d’extractibles et des composés structuraux le long de la branche afin de mieux comprendre cette variation de densité et de proposer, le cas échéant, des voies de valorisations des branches.

Matériel et Méthodes

Matériel biologique
Les matériaux biologiques utilisés dans cette étude sont les branches et les nœuds provenant du sapin (Abies alba), de l’épicéa (Picea abies), du douglas (Pseudotsuga menziesii) récoltés dans la région Grand Est. Les branches ont été choisies à 1,3 mètre de hauteur de chaque arbre. Ces branches ont été séchées et coupées en rondelles à différentes distances en partant du tronc (fig. 1).

Fig. 1 : Représentation schématique des distances de prélèvement des rondelles de branche.

À chaque distance (0, 25, 50, 100 et 250 cm), quatre rondelles d’un centimètre d’épaisseur ont été découpées et deux d’entre-elles utilisées pour les analyses chimiques. L’écorce est enlevée manuellement à l’aide d’un ciseau à bois, et chaque rondelle est broyée dans son intégralité après avoir été séchée à l’air à l’aide d’un broyeur à anneaux. Parallèlement, des nœuds prélevés dans les mêmes essences au niveau du tronc ont été broyés de la même manière.

Extraction

Pour les branches, la sciure est soumise à percolation Soxhlet pendant 6h afin d’extraire les molécules d’intérêt. Pour cela, la sciure est placée dans une cartouche en cellulose, elle-même placée dans l’extracteur Soxhlet. Le ballon contenant le solvant est chauffé à l’aide d’un chauffe-ballon et l’extracteur Soxhlet est muni d’un condenseur relié à un circuit d’eau froide.
L’extraction est réalisée en deux étapes : tout d’abord, en utilisant comme solvant un mélange toluène-éthanol (2 : 1 ; v/v) pendant 7h puis en utilisant seulement l’éthanol pendant 16h.
Le solvant est éliminé à l’aide d’un évaporateur rotatif permettant d’obtenir un extrait sec. L’extrait sec obtenu est pesé et le taux d’extractible est calculé de la manière suivante :

\[
\text{taux d’extractibles (\%)} = \frac{\text{masse d’extractibles obtenue (g)}}{\text{masse de sciure sèche dans la cartouche (g)}} \times 100
\]

Pour les nœuds, la sciure est soumise également à percolation Soxhlet pendant 6h mais seulement dans l’éthanol.

Analyses des extraits

L’analyse a été réalisée par chromatographie liquide haute performance (chaîne Nexera Shimadzu) couplée à un spectromètre de masse triple quadrupôles (LCMS-8030) et un détecteur UV-visible à barrettes de diodes. L’analyse est réalisée en phase inverse pendant 20 minutes. L’éluant pour la chromatographie est composé d’un mélange de deux solvants : de l’eau ultra-pure acidifiée à 0,1% avec de l’acide formique et de l’acétonitrile également acidifié à 0,1% avec de l’acide formique.

Premiers résultats

Taux d’extractibles

Quelque soit l’essence : le taux d’extractibles est plus élevé dans les nœuds témoin issus du tronc, puis au début de la branche et diminue vers l’extrémité de la branche (fig. 2).

![Boxplot](image.png)

Fig. 2 : Taux d’extractibles dans les nœuds et le long d’une branche chez trois espèces de résineux (A. P. abies ; B. A. alba ; C. P. menziesii). Le graphique met en évidence les taux d’extrait sous forme de boxplot, avec la moyenne représentée par un trait noir.

Le taux d’extractibles de 23,01% dans les nœuds passe à 14,46% en début de branche puis à 2,34% à l’extrémité chez l’épicéa. Chez le sapin, ce taux passe de la même manière de 21,55% dans les nœuds à 21,59% en début de branche puis à 1,82%. L’épicéa et le sapin sont les deux résineux dans cette étude qui ont les plus forts taux d’extractibles en début de branche. Le Douglas a un taux moins élevé en extractibles aussi bien dans le nœud (7,35%) que le long de la branche si on le compare aux deux autres essences (maximum 3,8%).

Analyses par chromatographie liquide

Chez l’épicéa, les chromatogrammes UV (fig. 3) montrent que les composés retrouvés dans la première rondelle à 0 cm sont similaires à ceux retrouvés dans les nœuds tandis qu’ils ne sont pas retrouvés dans la rondelle correspondant à l’extrémité de la branche.
Conclusion et perspectives

Le départ des branches d’épicéa, de sapin et de Douglas constitue une source d’extractibles intéressantes pouvant être mobilisé lors d’opérations d’élagage.

Le fort pourcentage d’extractible pourrait en partie expliquer la densité plus forte du bois de la branche à proximité du tronc du fait du prolongement du nœud pour maintenir la branche. Les nœuds servent de renforcement mécanique à la base des branches, soumises aux conditions climatiques (Kebbi-Benkeder et coll. 2015) mais également de protection envers les attaques biologiques (Aufsess et coll. 1984) d’où leur forte concentration en extractibles. Les nœuds étant la continuité entre le tronc et la branche, il est normal que le début de branche présente les mêmes caractéristiques que les nœuds. Ainsi, les branches peuvent être valorisées pour alimenter plusieurs marchés.

Références

Mécanismes moléculaires du remodelage du bois en réponse au froid chez l’Eucalyptus

HADJ BACHIR Ines1, PLOYET Raphael1, CAO Bang1, SAN CLEMENTE Hélène1, AGUILAR Marielle1, DUPAS Annabelle1, LADOUCE Nathalie1, GRIMA-PETTENATI Jacqueline1, TEULIERES Chantal1, HUSSEY Steven2, MOUNET Fabien1

1Laboratoire de Recherche en Sciences Végétales, UMR 5546 CNRS/Toulouse INP, 31320 Auzeville-Tolosane
2Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria 0002, South Africa

ines.hadj-bachir@lrsv.ups-tlse.fr

Mots clefs : Eucalyptus, stress froid, xylogénèse, paroi secondaire, biologie des systèmes, régulation transcriptionnelle

Contexte et objectifs
En tant que plantes pérennes, les arbres sont particulièrement soumis aux contraintes de l’environnement, et d’autant plus menacés par le changement climatique. Le bois, appelé aussi xylème secondaire, est un tissu essentiel à la physiologie de l’arbre. Il est formé à partir des cellules souches du cambium vasculaire, par un processus appelé xylogénèse, qui génère différents types cellulaires spécialisés (majoritairement des vaisseaux, des cellules de rayons et des fibres). Lors de leur différenciation, les cellules cambiales se divisent et grandissent, puis s’entourent d’une paroi secondaire épaisse, composée principalement de lignines, cellulose et hémicelluloses (Plomion, 2001). Toutes ces étapes sont finement régulées par un réseau complexe et hiérarchisé de facteurs de transcription. En réponse aux contraintes de l’environnement, on assiste à une reprogrammation de l’expression de ces gènes, qui se traduit par une modification de la structure et de la composition du bois. Ce mécanisme est encore mal compris, il agit à l’interface entre la réponse aux stress et la formation du bois. Cette plasticité, qui contribue à l’adaptation des arbres vis-à-vis des contraintes abiotiques, implique de nombreux gènes dont la fonction est encore inconnue. Dans le cadre de mon doctorat, réalisé au sein de l’équipe « Régulation et Dynamique de la formation du Bois » (ReDyWood), je m’intéresse à l’effet du froid sur le processus de différenciation du xylème secondaire. Des travaux antérieurs ont montré que la voie de signalisation impliquant les facteurs de transcription DREB1/CBF jouait un rôle majeur dans le remodelage des tissus du bois en réponse à une acclimatation au froid (Nguyen 2017 ; Ployet 2018 ; Cao 2020). Les CBF sont des éléments clés de la réponse au froid chez les plantes, ils sont très rapidement induits et sont capables de réguler l’expression de gènes cibles qui contribuent à augmenter la tolérance au gel de la plante (Zhao 2016). J’ai donc pour objectif : (1) d’identifier les cibles des facteurs de transcription CBF, (2) de caractériser finement les effets du froid sur la structure et la composition du bois et (3) de comprendre en quoi ces modifications contribuent à la tolérance des arbres vis-à-vis du froid. Mes travaux sont réalisés chez l’Eucalyptus, arbre feuillus le plus planté au monde, qui représente une ressource agronomique très importante, notamment pour la production de pâte à papier. L’utilisation des espèces les plus productives d’Eucalyptus dans les filières forestières des pays de l’hémisphère nord est limité par leur forte sensibilité au gel. Je travaille donc sur une variété hybride d’Eucalyptus gunnii (E.gunnii x E.dalrympleana) capable de résister aux conditions hivernales. Ces arbres, qui ne
présentent pas d’endodormance, ont une croissance continue, y compris en hiver, ce qui laisse présager des mécanismes biologiques originaux en réponse au stress froid.

Matériel et méthode

Des outils d’analyses automatisées de coupes transversales de xylème ont été utilisés pour mesurer des paramètres cellulaires (épaisseur de paroi, taille et densité des vaisseaux, activité cambiale) à partir de tiges de plants d’Eucalyptus âgés de 6 mois, soumis ou non à une acclimatation au froid à 4°C pendant 7 semaines. La composition du xylème est analysée par des dosages biochimiques ciblés et une approche globale de spectroscopie infra rouge à transformée de fourier (FT-IR) à partir de poudre de tiges sans écorce. Ces données sont corrélatées, par des approches de biologie des systèmes, à des données transcriptomiques afin d’identifier des facteurs de transcription impliqués dans le remodelage des tissus du bois en réponse au froid. J’ai utilisé la technique de DNA Affinity Purification Sequencing (DAPseq), une nouvelle génération d’analyse haut débit, pour identifier les cibles de ces facteurs de transcription.

Résultats et discussion

Nous avons pu montrer que le remodelage du xylème secondaire en réponse au froid est caractérisé par un ralentissement de l’activité cambiale, un épaississement et une lignification de la paroi secondaire des cellules du xylème situées immédiatement sous le cambium, correspondant au xylème en différenciation formé pendant l’acclimatation au froid (Fig. 1 : zone entre les pointillés), ainsi que la formation de vaisseaux plus petits et en plus grand nombre. Ce phénomène est observé en réponse à une acclimatation au froid en conditions contrôlées, aussi bien que sur des arbres adultes dont le xylème a été récolté en hiver (Ployet 2018). Des phénomènes similaires sont observés dans des Eucalyptus transgéniques qui surexpriment un facteur de transcription essentiel de la réponse au froid, appartenant à la famille des CBF (Cao 2020). De plus, l’analyse FTIR montre une modification du spectre d’absorption en réponse à une acclimatation au froid, au niveau de nombres d’ondes reliés à des composés de la paroi secondaire (cellulose, hémicelluloses et lignine) d’après les données de la littérature (Fig. 2).

![Fig. 1 : La structure et la composition du bois est modifiée en réponse au froid. Coloration Safranine/Astra Blue de sections transversales de tiges d’Eucalyptus, ayant poussé à 25°C ou pendant 7 semaines à 4°C.](image)
Fig. 2 : L’analyse FTIR révèle des changements majeurs de composition de la paroi secondaire du bois en réponse au froid. A : PLSDA 3D réalisée sur les valeurs normalisées du spectre d’absorption (2000 à 800 cm⁻¹), à partir d’échantillons de tiges ayant subi une cinétique de stress froid. B : PLSDA réalisée sur 2 groupes : échantillons avant (T0 et T1, en vert) ou après une longue acclimatation au froid (T2, T3 et T4, en bleu). C : Spectres médians d’absorption des échantillons avant (courbe grise) ou après (courbe orange) une longue acclimatation au froid. L’histogramme bleu représente la contribution de chaque nombre d’onde à la composante 1 de la Fig. 2B. L’histogramme jaune représente la contribution des 500 nombres d’ondes les plus discriminants sur la composante 1, identifiés à partir d’une Sparse-PLSDA. Les nombres représentent les nombres d’ondes expliquant le mieux la séparation des échantillons, certains d’entre eux étant reliés à des composés de la paroi d’après les données de la littérature.

L’analyse du transcriptome des tissus du xylème soumis au froid montre que les CBF sont au cœur d’un réseau de co-expression impliquant aussi bien des mécanismes de défense que des gènes impliqués dans la formation du bois. La recherche de cibles directes de ces facteurs de transcription CBF par DAPseq a révélé un nombre conséquent de gènes reliés au processus de différenciation du xylème secondaire : on retrouve des gènes de biosynthèse de lignines, de cellulose, d’hémicelluloses, des régulateurs de la formation de la paroi secondaire mais aussi des gènes impliqués dans des voies de signalisation hormonales comme l’auxine (Fig. 3). Tout ceci contribue à confirmer l’hypothèse d’une implication de la voie de signalisation de la réponse au froid impliquant les facteurs de transcription CBF dans le remodelage du bois observé en réponse au froid.
Conclusion et perspectives

Le bois formé lorsque l’arbre est soumis à des températures froides présente des caractéristiques de composition et de structure différentes d’une croissance à température optimale. Ce remodelage du xylème secondaire en réponse au froid semble lié à l’action de facteurs de transcription CBF, un acteur clé de la réponse au froid chez les plantes. Les résultats de mes travaux montrent que les CBF pourraient influencer la formation du bois en induisant l’expression (1) de gènes impliqués dans la biosynthèse de la paroi secondaire, (2) de facteurs de transcription qui contrôlent la différentiation des cellules du xylème et (3) en modifiant les balances hormonales impliqués dans la xylogénèse. Mon prochain objectif est de comprendre comment ces modifications du bois observées en réponse au froid peuvent contribuer à une meilleure tolérance de l’arbre face aux conditions gélives.

Remerciements

Références

Outils de traitement du signal pour l’évaluation non destructive des murs à ossature bois par ondes RADAR

HAMDI Seif Eddine¹, SBARTAI Zoubir Mehdi¹, BALAYSSAC Jean-Paul², MANDRARA Zaratiana³, LANVIN Jean-Denis³

¹Institut de Mécanique et Ingénierie, 351 cours de la libération, 33405 Talence Cedex, France
²LMDC, INSA/UPS Génie Civil, 135 Avenue de Rangueil, 31077 Toulouse cedex 04, France
³FCBA, Pôle Industrie Bois Construction, Allée de Boutaut 33300 Bordeaux, France

Mots clefs : Murs à ossature bois ; traitement du signal ; onde électromagnétique ; CND

Contexte et objectifs

Les propriétés physiques et mécaniques des constructions à ossature bois sont liées aux conditions d'exposition et à leurs variations (Wai-Lok, 2018). Actuellement, le diagnostic de ce type de structures nécessite le démontage et la dégradation de ses éléments périphériques pour constater l’état et les pathologies des multiples couches et matériaux constituant (Wai-Lok, 2018). Par conséquent, l’évaluation et le contrôle non destructif (CND) pour vérifier leurs conformités avec les normes en vigueur à la livraison et après vieillissement du bâtiment sont une nécessité pour les maîtres d'ouvrage afin de prédire la durée de vie des structures dans un contexte de gestion durable du patrimoine bâti. Cette étude effectuée dans le cadre du projet MOBSCAN financé par Carnot Arts et Carnot MECD, s’inscrit dans ce contexte.

Le système radar (Ground Penetrating Radar GPR) est un outil d’auscultation des matériaux totalement non destructif, rapide, compact et sans contact. L’acquisition de profils radar consiste à effectuer des mesures sur un matériau, et à enregistrer les signaux. Ces signaux enregistrés représentent l’amplitude des ondes réfléchies par les différentes interfaces présentant des contrastes de propriétés diélectriques en fonction du temps. La propagation des ondes radar est fortement liée à la permittivité et la conductivité du matériau qui sont très sensibles aux variations de l’humidité. En effet, en plus de l’efficacité du GPR à évaluer l’humidité des matériaux de construction comme le bois, il a l’avantage par rapport à d’autres techniques de donner des informations sur la profondeur d’une paroi de façon globale. Ainsi l’analyse fine des bâtiments existants permettrait d’évaluer les travaux d’amélioration, de modification, de maintenance et leurs coûts (Sbartai, 2007 ; 2012).

La caractérisation physique du milieu de propagation par la technique radar est basée essentiellement sur la détermination de la vitesse et de l’atténuation des ondes radars au cours de leur propagation dans le milieu, mais aussi sur l’analyse des coefficients de réflexion de ces mêmes ondes à l’interface des milieux propagation. Généralement, la détermination de la vitesse de propagation dans le milieu est réalisée par deux façons. La première consiste à la configuration mono-statique (offset fixe de quelques centimètres, l’émetteur et le récepteur dans le même boitier). La deuxième consiste à la configuration bi-statique en réalisant plusieurs mesures radar pour des distances émetteur/récepteur différentes et connues. Dans ce travail, la première configuration est retenue. Cela signifie qu’il faut connaître exactement le trajet et le temps de propagation des ondes radar dans le matériau. Cependant, il est difficile de remonter directement au temps zéro (le temps de départ de l’impulsion électromagnétique), et donc au temps de parcours de l’onde dans le matériau. Une façon d’évaluer la vitesse de propagation et de calculer le temps zéro (t₀) est d’effectuer des mesures dans l’air (références). Cette technique, connue sous le nom de Fixed Offset (FO), a l’avantage d’être plus rapide puisqu’elle ne nécessite la réalisation que d’un seul offset (Galagedara, 2003 ; Mai 2015).
Cette étude propose l’utilisation du GPR comme méthode CND pour caractériser les matériaux constituant des murs à ossature bois. On propose d’utiliser le GPR à l’échelle de la paroi, pour réaliser des cartographies de vitesse des ondes qui pourront révéler des contrastes des paramètres électromagnétiques liés à des modifications de propriétés des matériaux constituant l’assemblage (isolants, bois d’ossature, présence d’humidité ou absence d’isolant). Une méthode de traitement de signal exploitant l’effet de la variation des couches composant le mur à ossature bois sur la vitesse de propagation de l’onde directe est proposée.

Matériaux et méthodes

Les mesures radar ont été effectués sur une maquette de mur à ossature bois à l’échelle du laboratoire fournie par FCBA de Bordeaux. La figure 1 présente les différents éléments constituant cette maquette de dimension 900 × 600 × 400 mm³.

Le matériel de mesure est composé d’un système radar SIR 3000 avec un dérivateur pour pouvoir connecter deux antennes. Les antennes utilisées sont un couple d’antennes 2.6 GHz (Fig. 2a). Les mesures ont été effectuées en utilisant une antenne (une seule boîte composée de deux dipôles Emetteur-Récepteur) à offset fixe de l’ordre de 6 cm. Dans cette configuration, l’antenne est placée dans l’air pour une mesure de référence. Ensuite, elle est placée sur la paroi (bardage) de la maquette (Fig. 2b). Un C-scan a été effectué suivant les directions x et y (Fig. 2c). Une centaine de signaux sont enregistrés dans l’air et dans le matériau.

Fig. 1 : Schéma de la maquette du mur à ossature bois (a)

Fig. 2 : Maquette du mur à ossature bois : Bardage extérieur avec tasseaux bois (a) ; Montants bois avec isolant (b) ; Grille de mesures radars à l’échelle de la paroi (c)
Résultats et analyse

Plusieurs algorithmes de traitement de signal ont été implémenté dans le but de réduire le rapport signal sur bruit du radar pour mieux comprendre la géométrie interne de l’objet ausculté. En effet, l’image renvoyée par le radar ne correspond pas à la géométrie exacte de l’objet. Ceci est dû principalement au rapport signal sur bruit qui est souvent proche de 1 et à la longueur d’onde des émissions radar ainsi que les dimensions de l’objet. La Fig 3a-b présente le résultat de l’application de plusieurs algorithmes de filtrages et de méthodes de prétraitement, tel que l’algorithme de Pan and Tompkins, la Nonlinear Phase Space Reconstruction, la State-Machine et le Filter Bank, afin d’améliorer le taux de détection des pics de réflexion et de réduire la fausse détection de l’onde directe dans les profils radar.

Fig. 3 : Détection et localisation non supervisée des pics de réflexion avec la Nonlinear Phase Space Reconstruction (NPSR) (a) ; Multilevel Teager Energy Operator (MTEO) (b)

La Fig 4a-b montre le résultat de l’application de l’algorithme du matched filter pour la reconstruction des profils surfaciques des éléments de la maquette à ossature bois. Cet algorithme permet d’optimiser la résolution spatiale d’un C-scan. En effet, dans un radargramme typique, chaque point diffractant du milieu sondé apparaît comme une hyperbole ce qui présente une résolution faible de l’image vue l’étalement spatial de l’hyperbole. Un des principaux traitements sur les C-Scan consiste à enlever l’ambiguïté sur l’emplacement exact de l’objet réflecteur en transformant le profil radar espace-temps en une image dans laquelle les réflecteurs sont correctement positionnés et à taille réelle, ce traitement est connu sous le nom de la migration.

Fig. 4 : Projection spatiale 2D et reconstruction des profils radar par l’application du Matched filter sur les signaux des B-scans verticaux (a) ; Signaux des B-scan horizontaux (b)
Plusieurs algorithmes d’identification et de reconstruction de contours ont été test pour la projection 2D des reconstructions des C-scans à partir des profils obtenus. La Fig. 5 à-c montre les résultats obtenus par l’application de l’algorithme de Sobel Filter, Prewitt Filter et la 2D Continuous Wavelet Transform. Ces résultats montrent une reconstruction acceptable des éléments de la maquette à ossature bois. Cependant, certaines difficultés restent à surmonter, comme la définition du temps zéro, correspondant au moment d’émission de l’impulsion électromagnétique ainsi que des problèmes d’acquisitions radars survenus sur les bords de la maquette, ce qui cause la dégradation des signaux et la perte de l’information. Il serait donc pertinent de mettre en place un processus d’acquisition radar automatisé, ce qui peut améliorer les résultats finaux des algorithmes proposés.

Fig. 5 : Détectio et reconstruction des contours par Sobel filter (a) ; Prewitt filter (b) ; 2D Continuous Wavelet Transform (c)

Remerciements
Les auteurs souhaitent vivement remercier Carnot Arts et Carnot MECD pour leur soutien financier à ce travail dans le cadre du projet MOBSCAN.

Références
Comparison in extractives chemical signatures between branch, knot and bark fractions from forestry and agroforestry walnut trees

HEIM Lucie1,2,3, DODELER Roxane1,2,3, BRANCHERIAU Loïc1,2, MARCHAL Remy3, BOUTAHAR Nabila1,2, LOTTE Sylvain1,2, DUMARÇAY Stéphane4, GERARDIN Philippe4, CANDELIER Kevin1,2

1 CIRAD, Research Unit BioWooEB, 34000, Montpellier, France.
2 BioWooEB, Univ. Montpellier, CIRAD, Montpellier, France.
3 Arts et Metiers Institute of Technology, LABOMAP, HESAM University F-71250, Cluny, France.
4 Université de Lorraine, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Laboratoire d’Etudes et de Recherche sur le Matériau Bois, Nancy, France

lucie.heim@ensam.eu

Mots clefs : Agroforestry; Bark; Branches; Extractives; Knot; LC-MS; NIRS; Walnut.

Introduction
Walnut agroforestry systems require regular tree pruning, generating a large volume of biomass residues. These agro-forest wastes are today mainly valorized as wood-energy, Ramial Chipped Wood (RCW) or as animal litter (Terrasse et al. 2021). However, walnut is recognized as a rich source of different extractives compounds, which could be recovered as valuable chemicals. In the Framework of the Agrobranch project (Ademe, Graine, 2018-2022), this study aims to improve the knowledge about the composition of the water and ethanol extractives contents of wood, knot and bark fractions from walnut branches, harvested in agroforestry (AF) and forestry control (FC) systems. LC-MS analyses were carried out to identify the chemical composition between all the sample modalities. Additionally, all samples were analyzed by NIR-Spectroscopy with the aim of developing a fast system to assess the branch wood properties from agroforestry and forestry walnut branches, knots and bark wood fractions.

Materials and methods
The experiment was carried out at the Restinclières farm in southern France (43°420 N, 3°510 E and elevation 61 m). The two plots with 25 years old walnuts, an Agroforestry plot (AF, with 140 walnuts) and a Forestry Control plot (FC, with 235 walnuts), are presented in Figure 1. As specified in Figure 1, two hybrid walnut (Juglans nigra × Juglans regia) trees were sampled from agroforestry (AF) and forestry control (FC) plots.

Fig.1: Walnut trees selection in the Agroforestry (AF) and Forestry Control (FC) plots at the Restinclières farm in southern France.
The detailed sampling of Figure 2 is presented for one studied tree. A similar samples repartition was performed for each trunk and branches from AF and FC plots. So, the total number of samples, including branch and trunk wood, knot wood and bark, used for this study is 195. All of these 195 wood samples were ground in powder (0.2 mm and 0.5 mm) before analyses by NIR-Spectroscopy [MicroNIR OnSite-W, VIAVI Solutions Inc.]. Then all samples were extracted with successives soxlet extraction process using water and ethanol [32221-M; HoneyWell, Germany] solvents. For each extraction step, the extractives rates were determined. Finally, only a representative selection of 14 Ethanol-extracted samples were characterized by LC-MS analyses [Shimadzu LC-20A ultra-HPLC system, Kyoto, Japan].

Results and Discussions

Extractives contents of AF and FC specimens are not significantly different for branch, knot and bark. However, PLS-DA models developed with NIRS measurements showed that chemical differences exist between AF and FC samples, and these differences in composition (even low) is sufficient to distinguish wood-knots and bark specimens from different forestry systems. Figure 3 highlighted that PLS-DA models based on treated NIR signatures are efficient for classifying walnut wood specimens from forest control (FC) and agroforestry plots (AF).
For both forestry systems, branch and knot extractive contents are significantly lower than those of bark specimens. These results are confirmed by the Principal Component Analyses (PCA) highlighting that the chemical composition of branch and knot woods are similar to each other and very different compared to those of bark samples (Figure 4).

![PCA graph](image)

Fig.4: Individuals graph of a PCA led on the branch, knot and bark wood fractions (before extraction) of walnut tree from forestry and agroforestry systems.

LC-MS analyses highlighted that main components of ethanol-extracts of AF and FC branch wood were lignans following by sterols and flavonoids. Ethanol-extracts from knots specimens are mainly composed by lignans following by polyphenols, polyssacharides and flavonoid compounds. Finally, ethanol-extracts from bark specimens are mainly represented by flavonoids components following by polyphenols and sterols. In addition, the chemical composition of ethanol-extracts of bark samples depends on the bark position in the tree: branch, branch-trunk junction and trunk. The ethanol-extractives chemical compositions of branch and knot woods were slightly different for AF and FC samples. Whereas their difference in chemical composition between AF bark and FC bark were most marked, specifically concerning the flavonoids compounds.
10ème journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Tab. 1 : List of chemical compounds, identified by LC-MS analysis, present in the ethanolic extracts from AF and FC branch, knot and bark fractions.

<table>
<thead>
<tr>
<th>Chemical compounds</th>
<th>Scheme</th>
<th>Molar Weight (g/mol)</th>
<th>Presence in ethanol-extracted samples*</th>
<th>Types Of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malic acid</td>
<td></td>
<td>134</td>
<td>AF - Branch - Knot - Bark</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Gallic acid</td>
<td></td>
<td>170</td>
<td>AF - FC -</td>
<td>Phenolic acids</td>
</tr>
<tr>
<td>Syringic acid</td>
<td></td>
<td>198</td>
<td>AF - FC -</td>
<td>Phenolic acids</td>
</tr>
<tr>
<td>Sakuranetin</td>
<td></td>
<td>286</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>Quercetin</td>
<td></td>
<td>302</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>Rhamnetin</td>
<td></td>
<td>316</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>3,7-dimethylquercetin</td>
<td></td>
<td>330</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>Mono-O-galloyl-</td>
<td></td>
<td>332</td>
<td>AF - FC -</td>
<td>Phenolic acids glycosylated</td>
</tr>
<tr>
<td>gallic acid</td>
<td></td>
<td>356</td>
<td>AF - FC -</td>
<td>Lignans</td>
</tr>
<tr>
<td>Secoisolaripentol</td>
<td></td>
<td>362</td>
<td>AF - FC -</td>
<td>Lignans</td>
</tr>
<tr>
<td>Oleuropein-</td>
<td></td>
<td>378</td>
<td>AF - FC -</td>
<td>Phenolic acids</td>
</tr>
<tr>
<td>aglycone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercitrin</td>
<td></td>
<td>448</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>Isoquercitrin</td>
<td></td>
<td>464</td>
<td>AF - FC -</td>
<td>Flavonoids</td>
</tr>
<tr>
<td>Campesterol</td>
<td></td>
<td>472</td>
<td>AF - FC -</td>
<td>Sterols</td>
</tr>
</tbody>
</table>

* ++ = present in high quantity; + = present in medium quantity; - = present in low quantity; -- = present in trace; Ø = absent.

Conclusion

This study provides new knowledge on branch woods from agroforestry systems, which are still very under-studied at present. The results obtained make it possible to highlight the evolution and variability of the chemical characteristics of wood branches from agroforestry walnut wood compared to the same species grown in forestry systems.

Acknowledgements

This work was take part from the AGROBRANCHE (2018-2021) project (Study of the valuation of branches in agroforestry for bio-based materials and green chemistry), financially supported by the French Environment & Energy Management Agency (ADEME). The authors also gratefully acknowledge the GDR 3544 “Science du Bois” for its financial support for the STSM attributed to Roxane Dodeler to carry out the LC-MS analyses at the LERMaB, University of Lorraine-Nancy. Finally, they thank the ANR (TreeTrace project ANR-17-CF10-0016-03) for funding the participation in the GDR Bois 2021.

References

Caractérisation de réactions de greffage sur le bois par Py-GC/MS

Hentges David, Stéphane Dumarçay, Philippe Gérardin

Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
david.hentges@univ-lorraine.fr

Mots clefs : Bois modifié ; Acylation ; Py-GC/MS ; Épicéa

La pyrolyse couplée à la chromatographie en phase gazeuse et la spectrométrie de masse (Py-GC/MS) sont des techniques analytiques de choix pour l’étude des polymères. Une des structures naturelles les plus complexes étudiées est le bois, qui est lui-même composé des trois polymères les plus abondants au monde : la cellulose, la lignine et les hémicelluloses. Le bois nourrit un intérêt croissant depuis quelques décennies au vu de ses multiples avantages en tant que ressource : son abondance et son caractère renouvelable. De nombreuses modifications du bois ont vu le jour afin d’améliorer ses propriétés mécaniques, sa stabilité dimensionnelle, sa résistance aux biodégradations, ses applications dans des produits composites et de nouveaux matériaux (Gérardin 2016).

Afin de caractériser les différents types de modifications faites au LERMAB, des techniques telles que la RMN 13C et la spectroscopie FTIR sont utilisées, mais ne fournissent pas toutes les informations nécessaires à la compréhension de la modification. Elles permettent de mettre en évidence quel type de liaison s’est formé, mais pas le site exact au sein d’une molécule où la modification a eu lieu. La PY-GC/MS a pour vocation de répondre à ces questions en fournissant une image plus fine de la modification chimique. Cette approche a été tentée par Schwarzinger and List (2010) qui a réussi à mettre en évidence des produits de pyrolyse analytique de lignine acétylés en utilisant du bois acétylé avec de l’anhydride acétique deutéré et non-deutéré pour comparaison.

Les travaux présentés ici portent sur de l’épicéa acylé avec des chaînes grasses de différentes longueurs (C4 à C8) en modifiant le protocole de Peydecastaing (2008) qui utilisait des anhydrides classiques.

Le bois modifié est pyrolysé à 550°C pendant 5s en Py-GC/MS. Les pyrolysats sont transportés à travers une colonne de transfert à 280°C à l’aide d’un flux d’hélium à 75 mL/min jusqu’à un injecteur maintenu à 280°C. La séparation est obtenue dans une DB-1701 (60 m x 0,25 mm x 0,25 µm) grâce à un gradient de température allant de 50 à 280°C suivant un pas de temps 5 min à 50°C suivis d’une incrémentation de 6°C/min jusqu’à 280°C. La température finale est maintenue pendant 16,67 min pour une durée totale de l'expérience de 60 minutes. Le mode d’ionisation de la MS est l’EI avec une énergie d’ionisation de 70 eV. L’analyse est effectuée sur une plage de 28-500 m/z. Les pyrogrammes sont acquis avec le logiciel Turbomass et traités avec le logiciel open source OpenChrom afin de sélectionner de manière souple et performante les pics, les intégrer et les identifier.

Les pyrogrammes d’épicéa non modifiés et modifiés en C4 sont présentés sur les figures 2 et 3.
De nombreuses différences peuvent être observées en comparant les deux pyrogrammes. Le bois modifié possède un nombre bien plus important de produits de dégradation sans toutefois perdre les pics qui sont observés dans le bois non modifié, présents à des intensités plus faibles. La majorité des nouveaux pics au-delà du temps de rétention de 25 min semble correspondre à une structure de carbohydrate ou de méthoxyphénylpropane acylé, car ils comprennent le fragment 71 m/z dans leur spectre de masse qui correspond au cation acylium C4 (Figure 4).

Jusqu’à présent, des structures de lignine acylée ont pu être identifiées, en se basant sur les spectres de masse de la publication de Schwanninger (2010). Ceux-ci correspondent à l’alcool coniférylique, qui possède deux motifs OH acylés (Figure 5), la vanilline, l’eugénol etc...

L’alcool coniférylique diacylé a une masse de 320 m/z. Ce pic est le dernier pic observé sur le spectre de masse. Le fragment de 250 m/z correspond à l’alcool coniférylique monoacylé, qui est structurellement plus stable que le diacylé. Le pic en 179 correspond au cation alcool coniférylique non-acylé.

Des structures similaires ont aussi été observées chez l’épicéa modifié en C4 avec une insaturation ainsi que pour les modifications en C5. Cependant à partir de C8, on n’observe plus d’alcool coniférylique diacylé car la structure semble trop lourde et n’est probablement pas volatile à la température limite de la GC.
Figure 5 : Spectre de masse du pic et la molécule correspondante.

Identifier des carbohydrates acylés s’avère plus difficile car ceux-ci semblent se fragmenter plus facilement lors de la pyrolyse et on retrouve plutôt des petites molécules acylées qui pourraient tout aussi bien être issues de la lignine.

On peut conclure que la Py-GC/MS permet de caractériser la modification de la lignine, des structures acylées jusqu’ici non identifiées ayant été mises en évidence.

Ainsi, la Py-GC/MS promet d’élucider les mécanismes de modification de bois par différents types de modification et pourrait prochainement s’installer comme méthode de choix pour caractériser les changements que subit le bois.

Références

Identify the factors of creep behavior on small clear wood

HSIEH Tai-Yun¹, MONTERO Cédric¹, ALMERAS Tancrède¹, BARDET Sandrine¹

¹ Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France
tai-yun.hsieh@umontpellier.fr

Keywords: Wood creep; vibration test; density; specific modulus

Context and objectives

Wood is a biomaterial which has been used from ancient time from the design of tools to the construction of buildings. To use wood in the architecture, its long-term behavior needs to be considered and controlled. Creep behavior acts as the deformation increase with time, even if the loading on the structure does not change. When the deformation increases to the limitation of the material, it will lead to damage or serviceability issues. So, it is important to pay attention to time-dependent behavior. To consider it, thicker beams would be used in structure, and an accurate model is necessary to fulfil economic competitively. Unlike inorganic materials like concrete or steel, wood is a natural composite, which has included numerous compositions and microstructural organizations. Not only the biopolymers like cellulose, hemicellulose, lignin, but also the extractive and the ash. The percentage of the polymers, the cellular anatomy, and the interaction with the environment condition, e.g., moisture content, affect the mechanic behavior of the wood and consequently the rheological behavior among time scales.

Rheology is the study of the deformation and flow of materials (Menard, 1999). According to Morlier (1994), Schaffer said that the wood creep behavior is non-linear at all the stress level. Only the short-term behavior at the stress level, which is lower than 40% of failure, could be approximated as linear behavior and Boltzmann’s superposition principle is well-fitted (Holzer et al., 1989). In Morlier (1994), Whale also point out the characteristics of wood materials under long-term loading. When the stress, moisture content and temperature are low, the long-term behavior of wood will close to linear elastic manner; when all the conditions raise, the linear viscoelastic in nature behavior will be presented. Under high stress level or in fluctuating environment conditions, wood becomes a kind of non-linear viscoelastic material. So, in controlled conditions, wood is a liner viscoelastic material which shows a delay deformation during loading and dynamic mechanical analysis (DMA), and the complex modulus E^* can represent the material behavior. E^* can be marked on the polar coordinate system by storage modulus E', loss modulus E'' and the angle δ. The damping coefficient, $\tan\delta$, is defined by E''/E' (Fig. 1).

Fig. 1: DMA relationship (Menard, 1999)

As previous, another way to understand the material's behavior of rheology is dynamic test like vibration test. According to Kataoka and Ono (1975), the vibration test has been used to study on the dynamic behavior for a long time. From the vibration test, we can have the Young’s modulus (E) by the Equation 1.

$$E = 48\pi^2 \rho t^4 f^2 / m^4 h^2$$ \hspace{1cm} (1)
ρ is the density, l is the length and h is the thickness of the specimen, f is resonance frequency, m is a constant. At normal testing condition, m = 4.73 (Kataoka and Ono, 1975). The tanδ can be measured by the decrement of amplitude (Equation 2).

\[
\lambda = \frac{1}{n} \ln \frac{A_0}{A_n} \approx \pi \times \tan \delta \quad (2)
\]

\(A_0 \) are the initial amplitude, \(A_n \) the amplitudes at the cycle n. The logarithmic decrement \(\lambda \) came from the regression result of the peak amplitudes by time. After the vibration test, we can have the frequency which had the maximum amplitude call \(f_R \) and the bandwidth at half-power of the peak call \(\Delta f \). The quality factor (\(Q^{-1} \)) was defined as the Equation 3. According to Brémaud et al. (2012), the relationship between \(Q^{-1} \) and tanδ was almost \(y=x \) and with the \(R^2 = 0.989 \). It means that in the normal cases, we can take \(Q^{-1} \) as tanδ. At the same time, it is a factor stands for the rheological behavior of materials.

\[
Q^{-1} = \frac{\Delta f}{f_R} \quad (3)
\]

In this study, the vibrational characteristics of the specimens have been collected in addition to usual wood information, and the 10-day creep test has been done to understand the relationship between the factors and the creep behavior.

Materials and Methods

Four kinds of wood have been used, including Douglas fir (\(Pseudotsuga menziesii \)), European Beech (\(Fagus sylvatica \)), European Oak (\(Quercus petraea \)), and Poplar (\(Populus spp. \)). All kinds of wood were cut into the size 150 mm (L) * 12 mm (b) * 2 mm (h). The specimens were put in the climatic chamber Memmert HPP750 at 20 °C and relative humidity (RH) 30% for 3 weeks. After stabilization, the size and the weight of the specimens were measured, and the vibration test has been done. These measurements have been tested on the environment 20 °C and RH = 85% again.

The setup of the vibration testing system (Vybris) was designed by LMGC. A piece of metal was pasted at the end of the specimens, and they were hanged by 2 cotton threads at the distance of 0.224 mm of the specimens’ length from the end. An electromagnet to give a vibration including a series of frequency at the end side of the specimen. The vibration signal was sensed by a laser sensor at the center of the specimen. By the program developed by LabVIEW, the results of the fast Fourier transform \(f_R, \Delta f \) and \(A_0 \) were collected. The specific modulus and \(Q^{-1} \) were calculated by the testing result.

The vibration test results were the reference of sampling. In this study, 10 specimens were selected to have the most wiled density diversity and the closest specific modulus for the creep test. There were 3 Douglas fir, 2 Poplar, 3 European Beech, and 1 European Oak (Fig. 2).

Fig. 2: Preliminary measurements of vibrational specific modulus and density on all specimens and sampling results for a fixed domain of specific modulus
A 4-point bending creep test was settled inside the climate chamber with the environment 20 °C and RH = 85% with a constant load about 650 g for 10 days. The length between the 2 supports was 110 mm and the length between 2 loading points was 60 mm (Fig. 3).

Results and Discussion

In the vibration test result, under stable environment and all the specimens have similar specific modulus, there was a well-fitted relationship between density and the modulus of elasticity (MOE) (Fig. 4). When the specific modulus of the specimens was the same, the specimens were similar in the scale of cell wall level, including similar microfibril angle and grain angle (Brémaud et al., 2012). The density would be only related to the porosity, so it presented a high correlation result. In Fig. 6 are presented results of 10-day creep test including strain, swelling and compliance. We defined the first point of compliance as J0 and the last point as J10. The static MOE can be calculated by the reciprocal of J0. Comparing the dynamic MOE value from vibration test and the static MOE, it had also a good correlation with a 10% increment. It presented the relation of the dynamic and static MOE value (Fig. 5).

![Fig. 3: The 4-point bending setup](image)

![Fig. 4: Relationship between density and MOE](image)

![Fig. 5: Relation of static and dynamic MOE](image)

![Fig. 6: the 10-day creep test results](image)
From the fitting result of MOE of Vybris and J10, there was a good linear correlation between the 2 values (Fig. 7 (a)). It means that MOE from the short-term dynamic test can also be a predictor of long-term creep test. We can also find a linear relationship between J0 and J10 (Fig. 7 (b)). It shows that the static MOE can well-predict the creep behavior.

Discussion and conclusion

In this study, we can find a linear relationship between dynamic and static MOE. It means that vibration tests can well measure the characteristics of wood, and we can also observe the rheological behavior. Under stable environment, when the specific modulus of the specimens was controlled, we can assume that all the wood specimens have similar cell wall structure. In this case, density was a strong predictor of creep behavior.

Acknowledgments

This work has been supported by French National Research Agency (ANR) during EFEUR5 project (ANR-15-CE08-0027) for the investments into experimental equipment.

References

Suivi des déformations d’un panneau de bois peint du patrimoine : effet du cadre, du parquetage et de variations hygrothermiques

Delphine JULLIEN¹, Jean-Christophe DUPRE², Luca UZIELLI³, Franck HESSER², Lorenzo RIPARBELLI¹, Cécilia GAUVIN⁹, Paola MAZZANTI³, Joseph GRIL³, Gilles TOURNILLON⁶, Danièle AMOROSO⁷, Philippe HAZAEL-MASSIEUX⁸, Pierre STEPANOFF⁸, Marina BOUSVAROU⁴

¹ Equipe Bois, LMGC, UMR5508 Université Montpellier-CNRS ; ² Equipe PEM, Institut PPRIME, UPR 3346, Université de Poitiers-CNRS ; ³ DAGRI, Université de Florence, Italie ; ⁴ Musée Fabre, Montpellier ; ⁵ Université Clermont Auvergne, CNRS, Institut Pascal ; ⁶ Atelier Tournillon, Sainte Cécile les Vignes ; ⁷ Atelier Amoroso Waldeis, Villeneuve les Avignon ; ⁸ Entreprise Philippe Hazaël-Massieux, Villeneuve les Avignon ; ⁹ Science and MechAnichs in Conservation and Heritage, Sainte Cécile les Vignes

delphine.jullien@umontpellier.fr

Mots clefs : corrélation d’images ; couche picturale ; déformation ; environnement hygrothermique ; panneaux peints ; patrimoine

Contexte et objectifs

Les panneaux de bois peint du patrimoine sont des structures complexes, soumises aux variations hygrothermiques de leur environnement, qui évoluent au cours du temps, et présentent parfois des dommages. Les restaurateurs et conservateurs du patrimoine effectuent régulièrement des constats d’état qui permettent de décrire l’évolution de l’œuvre au cours du temps. Dans le but de comprendre et mieux décrire les mouvements et déformations de panneaux de bois peint du patrimoine, un dispositif expérimental original a été mis en place au sein du musée Fabre de Montpellier : une vitrine contrôlée en humidité permet d’accueillir un panneau peint, et de mesurer les déformations sur les 2 faces du panneau, au moyen d’un double dispositif de stéréo-vision d’images, constitué de 4 caméras positionnées de façon permanente sur les murs de la salle d’exposition. Nous présentons dans ce poster les résultats obtenus sur « La sainte trinité couronnant la vierge », panneau peint du XVIème siècle, de type huile sur bois, de dimensions hors cadre : hauteur 137 cm, largeur 98 cm, épaisseur 3 cm.

Matériel et méthode

Le panneau d’origine est constitué de planches de chêne verticales, 3 radiales et 1 sur dosse, assemblées par des traverses horizontales en sapin (Fig. 1). Des montants verticaux en sapin recouvraient ces traverses à mi-bois, et étaient cloués sur les traverses par morceaux. Le revers était recouvert d’un enduit qui semble très résistant et peu perméable. Le panneau était présenté dans un cadre de résineux de 135 mm de large et de 40 mm d’épaisseur moyenne. Afin de limiter les dommages observés sur le panneau, et donc sur l’œuvre, une restauration du panneau a été effectuée. Elle consistait à prélever l’ensemble des montants et traverses du renfort collé et cloué au revers (Fig. 2), et de le remplacer par un châssis à ressorts, permettant les retraits et gonflements latéraux des planches, tout en assurant une cohésion de la structure.
Nous avons procédé à plusieurs séries de mesure du panneau au sein de la vitrine dans différentes configurations :
- panneau d’origine dans son cadre
- panneau d’origine sans le cadre
- panneau sans le parquetage, après le prélèvement du parquetage par les restaurateurs en atelier (Fig. 2)

Nous avons également procédé à des variations d’humidité de l’environnement dans ces différentes configurations, afin de caractériser la réponse des différentes structures aux variations hygrothermiques.

Fig. 1 : Face (à gauche) et Revers du panneau de bois avec parquetage et cadre (à droite)

Fig. 2 : Opération de restauration : prélèvement du parquetage (à gauche). Panneau sans parquetage présenté dans la vitrine (à droite)
Résultats et discussion

Effet Mécanique du cadre et du parquetage sur le panneau

On observe (Fig. 3) que le panneau stabilisé à 65% RH a une forme concave vue de face, avec une flèche maximale de 15 mm. Le démontage du cadre n’a quasiment pas d’effet sur la forme (légère torsion de +/-1mm). Une fois le parquetage prélevé, le panneau présente une courbure nettement plus faible, de l’ordre de 3 mm au maximum.

Effet d’une variation d’humidité sur le panneau avec parquetage

Lorsque le panneau avec parquetage subit une augmentation d’humidité de 51 à 65% RH, on observe une courbure relative convexe, d’environ 2 mm de flèche maximale, et un gonflement horizontal du panneau, atteignant 0,1% au maximum dans certaines zones (Fig. 4). Nous attribuons la courbure convexe à l’effet des traverses horizontales qui limitent les gonflements, notamment du revers.

Fig. 4 : Déformée (à gauche) et déformations horizontales (à droite), vues de face, lors d’une variation d’hygrométrie de 51 à 65% RH du panneau avec parquetage (issue de [1]).
Effet d’une variation d’humidité sur le panneau sans parquetage

Lorsque le panneau sans parquetage subit une variation d’hygrométrie de 51 à 65% RH, on observe une courbure relative concave, de courbure nettement plus forte que dans le cas du panneau avec parquetage, avec une flèche maximale de l’ordre de 7 mm (Fig. 5). Les déformations horizontales sont également plus fortes, pouvant atteindre localement 0,15%. Ces mesures sont en accord avec le fait que le panneau sans parquetage se déforme plus librement.

Fig. 5 : Déformations horizontales du revers (à gauche) et déformée (à droite) du panneau sans parquetage, vue de face, lors d’une variation d’hygrométrie de 51 à 65% RH.

Conclusions

Des mesures de déformations par stéréo-suivi de marqueurs ont pu être menées sur un panneau de bois peint, dans une enceinte climatique, installée au cœur même d’une salle d’exposition du musée Fabre de Montpellier. Les résultats obtenus montrent que la présence du cadre influençait très peu la forme du panneau parqueté, tandis que le prélèvement du parquetage modifie fortement sa forme. Lors d’une augmentation d’humidité relative, nous observons une faible courbure convexe par rapport à la face dans le cas du panneau parqueté, et une courbure plus forte concave dans le cas du panneau sans parquetage. Des gonflements horizontaux sont observés dans les deux cas, plus importants dans le cas du panneau sans parquetage.

Cette expérimentation inédite a permis de mesurer les déformations d’un panneau de bois du patrimoine du XVᵉ siècle, à la suite d’un acte de restauration et lors de variations hygrothermiques.

Références

Vers un dialogue modèle numérique-métrologie de la réplique de la charpente de Notre Dame de Paris.

KAUFFMANN Lawrence1, COINTE Alain2, GALIMARD Philippe3, COUREAU Jean-Luc4,
SAUVAT Nicolas5

CNRS - Centre national de la recherche scientifique1
I2M - Institut de mécanique et d'ingénierie2,3,4,
Laboratoire de bois PE5

lawrence.kauffmann@u-bordeaux.fr

Mots-clés
Charpente bois ; Métrologie ; Éléments finis ; Monte-Carlo

Contextes et objectifs
On se propose d'étudier la cinématique des déformations de la charpente de Notre-Dame de Paris, sur des composants de la nef. En collaboration avec le lycée professionnel des métiers du bâtiment de Felletin, la travée N°9 de la charpente entre les fermes N°4 et 5 de la nef a été reproduite à l'échelle 1 sur le site de l'établissement.

La campagne expérimentale qui entoure cette réplique constitue la base de l'investigation sur le comportement à long-terme de la charpente d’origine qui a dû subir des renforcements consécutifs à de possibles désordres apparus au cours de son histoire.

Une simulation par éléments finis est menée en parallèle et vise à analyser sur la sensibilité des propriétés mécaniques utiles ou fonctionnelles de la performance structurale. L’objectif est de développer une modélisation fine de la charpente capable de mieux rendre compte de comportement à l’aide de données historiques recueillies et de connaissances physique et mécanique du matériau utile à l’analyse des risques des structures du patrimoine.

Matériel et méthode

Méthodologie :

FIG1. Réplique de la travée (a) dispositif de monitoring \textit{in-situ} (b)

Deux méthodes de surveillance des déplacements de la travée ont été mises en place :

- Une station de monitoring, figure 1 (b), fait l'acquisition de données de déplacements avec 14 capteurs positionnés sur la réplique pendant plusieurs mois. Deux autres capteurs relèvent la température et l'humidité ambiante du site. Une centrale météo double les mesures de température et d'humidité de l'air ainsi que la vitesse du vent. D'autre part, une mesure de l'humidité de certains composants a été mise en place donnant une indication de la teneur en eau.
des bois.
- Une série de relevés au tachéomètre permet de mesurer les déplacements de 40 cibles réparties sur les deux pignons de la travée figure 1 (a).

Au tachéomètre, l’utilisation de cibles réfléchissantes, permet une mesure globale de la déformation de la structure selon une fréquence bimensuelle [Courde.P, p 19-32]. Le monitoring, quant à lui, vient compléter ces mesures.

- En parallèle, un scan 3D de la structure est réalisé pour évoluer le niveau de déformation afin d’accéder au comportement tridimensionnel de l’ouvrage sous es charges permanentes et climatiques.

Le dépouillement de ces mesures permettra de renseigner le jumeau numérique en cours de développement

Monte-Carlo :

![Représentation des chargements(a)](image1)

![Représentation des déformées (b)](image2)

Une modélisation du comportement de la structure par la méthode des éléments finis de la travée est en cours d’élaboration sur Cast3M afin d’approcher le comportement réel observé in-situ. Il tiendra compte du comportement, des assemblages et de la qualité des bois.

On impose ainsi les charges propres estimées, figure 3 (a), dues à la couverture, en rouge, ainsi qu’aux éléments transverses qui relies les fermes, en vert, puis on procède à la visualisation de la déformée issue du calcul statique élastique, figure 3 (b). Un chargement artificiel et maîtrisé sera par la suite appliqué in-situ pour mieux caler les modèles.

Résultats et discussions

Métrieologie :

<table>
<thead>
<tr>
<th></th>
<th>E_i</th>
<th>E_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx</td>
<td>0,7mm</td>
<td>2,2mm</td>
</tr>
<tr>
<td>Δy</td>
<td>2,1 mm</td>
<td>1,2 mm</td>
</tr>
<tr>
<td>Δz</td>
<td>2,1 mm</td>
<td>0,4 mm</td>
</tr>
</tbody>
</table>

TAB.1 Tableaux des erreurs de mesure au tachéomètre

![FIG.2 Evolution de la flèche (mm) à mi-portée de la travée](image3)
Le contrôle direct systématique (valeurs doubles) sur nos données permet d'estimer l'erreur statistique afin d’en apprécier la qualité de mesure. Ainsi, le tableau I représente une estimation par le calcul de la précision industrielle « Ei » ainsi que de l'erreur accidentelle « Ea » [Lhuillier, p 13] de mesure des coordonnées relevés au tachéomètre.

Le contrôle indirect consiste à comparer les mesures obtenues à partir des différentes méthodes, comme la flèche verticale de l'entrait calculée avec les données du tachéomètre et mesurée par monitoring, figure 2.

_Monte-Carlo :

La méthode de Monte-Carlo consiste à éprouver la simulation un grand nombre de fois en distribuant aléatoirement les propriétés dans les barres suivant leur loi normale [FCBA, 2015], figure 4 (a).

En étudiant la sensibilité de la réponse de notre structure hyperstatique, figure 4 (b), on est alors en mesure d'apporter des éléments de réflexion sur l'impact de la dispersion des propriétés mécaniques des poutres, ainsi que celle des assemblages.

Conclusion et perspectives

_Métrieologie:

Lorsqu’on entreprend le suivi instrumentalisé des déformations d'une structure, il faut choisir le dispositif le plus approprié ou les couplages métrologiques adéquates. La multiplicité des outils de surveillance permet de compenser leurs défauts et ainsi de fournir un dispositif de suivi et d'indicateurs mieux maîtrisé et potentiellement plus discriminants.

_Monte-Carlo:

La méthode numérique de simulations Monte-Carlo permet d'observer en premier lieu les dispersions de propriétés à l'aide d'outils statistiques en intégrant un grand nombre de configurations et le filtrage par les effets systèmes inhérents à la géométrie de la structure. Le but de cette approche numérique est avant tout d'apporter des éléments de compréhension de la cinématique des déplacements globaux afin d'identifier certains phénomènes mis en jeu et points de vigilances qui corroborent l'analyse métrieologique de la structure réelle.

Références

Lhuillier : Précision des mesures, théorie des erreurs ; p 13/23 ; BTS métiers du géomètre[…], Lycée Livet ; Nantes.

Controlled lignin oxidation and hemicellulose deacetylation inside beech wood

KERALTA Assira 1, NISHIYAMA Yoshiharu 1, OGAWA Yu 1

1Centre de Recherche sur les MAcromolécules Végétales (CERMAV), Grenoble, France
assira.keralta@cermav.cnrs.fr

Mots clefs: Oxidation; deacetylation; peracetic acid; holocellulose; lignin, molded wood

Context and objective

The acetyl groups in hemicellulose such as xylan and aromatic lignin in the cell wall confer hydrophobicity and rigidity to wood. Oxidizing lignin and deacetylating hemicellulose would lead to modification of hygroscopic and mechanical properties of the cell wall. Recently, holocellulose preparation by peracetic acid (PAA) has been proposed to yield pulps with higher molecular weight. PAA is known to selectively react with phenolic groups, and this has been used in the single step pulping process (Westin et al. 2021). Our goal is to have control on lignin oxidation and hemicellulose deacetylation reactions on bulk wood by just filing the wood pores with chemical using PAA and an alkaline solution.

Materials and methods

Beech wood with an apparent density of 0.53 g/cm^3 and 8% of moisture content was used in this study. A sliding microtome was used to prepare wood slices with to 30-200 µm in thickness. 50×10×4 mm^3 (L×R×T) wood pieces were sawn.

Peracetic acid was prepared by mixing glacial acetic and 30% hydrogen peroxide at room temperature in volume ratio 2:1 (acetic acid:H_2O_2). 1.5% (v/v) of 96% H_2SO_4 was added as catalyst (Zhao et al. 2007). The produced PAA was analyzed by oxidant-reductive titration using ceric sulfate and sodium thiosulfate (Greenspan and Mackellar 1948). Then glacial acetic and distilled water were used to dilute the produced PAA. Peracetic acid synthesis is controlled by oxidant-reductive titration (Greenspan and Mackellar 1948). The mixing of glacial acetic acid and 30% hydrogen peroxide in volume ratio (2:1) and 1.5% H_2SO_4 gave a mixture of 42% PAA and 3.53% H_2O_2.

Lignin oxidation: Wood samples were put in excess of PAA and put under reduced pressure to evacuate the air trapped in the lumen to fill the pores with PAA. Then, the excess reactant was removed and kept at 70°C. To stop the reaction, they were washed with hot water, 1% NaOH solution and distilled water in the same way by filling and emptying the pores to extract the soluble fraction. They were dried at 105°C overnight to assess the weight loss.

Oxidized lignin recovery: The washing solution after the PAA reaction was recovered and the oxidized lignin was precipitated with 2.2N HCl. The precipitate was recovered by centrifugation and dried in desiccator.

Hemicellulose deacetylation: For the hemicellulose deacetylation, samples followed a similar process with that of the oxidation: the pore filling with NaOH solutions (0.5, 1, 2, 3.5 and 5 wt%) followed by removal of reactant excess and reaction at room temperature. They were washed with distilled water using a repetitive process of filling and emptying the wood pores.

Results and discussion

Oxidation and lignin recovery: After 1 h of treatment with 42% PAA at 70°C and the washing. In ^13^C CP/MAS solid-state NMR spectrum, the peaks of aromatic group between
125-155 ppm and methoxy group at 55 ppm totally disappeared for the treated wood and all other peaks remain intact (Fig. 1). In IR spectrum, peaks at 1593 cm\(^{-1}\) and 1505 cm\(^{-1}\) are disappeared and the absorbance of peak at 1462 cm\(^{-1}\) decreased (Fig. 2). This confirmed the complete oxidation of lignin and showed the specific attack on PAA on phenolic groups leaving untouched the holocellulose. The 4 mm beech wood was cut in half to assess the reaction homogeneity. The IR results recorded on the surface and the core of this cut sample are the same showing the homogeneity of the reaction through the entire bulk piece.

![Fig. 1: \(^{13}\)C CP/MAS spectra of oxidized (green) and untreated (purple) thin wood slices](image1)

![Fig. 2: FT-IR spectra of oxidized (green) and untreated (purple) thin wood slices](image2)

When the sample was treated with 42% PAA for 4 h, the solution still contained active PAA of 12%. This means equivalent of 30% PAA was consumed to completely oxidize the lignin aromatic group. Thus, we considered that 30% of PAA should be enough to oxidize the whole lignin in the wood cell wall. However, when treated with 30% PAA, peaks at 1593 cm\(^{-1}\) and 1505 cm\(^{-1}\) in the IR spectra did not completely disappear in the spectra (Fig. 3) and peaks between 125-155 ppm on \(^{13}\)C CP/MAS solid-state NMR indicating the presence of residual lignin after 4 h when treated with 30%PAA (Fig. 4). The PAA was, on the other hand, The presence of residual lignin is also confirmed in (Tab. 1). Treatment with 42% PAA allowed after washing to remove all the oxidized lignin. In contrary, 30% PAA eliminated less than one third of expected lignin amount.

Judging from the resonance intensity of \(^{13}\)C CP/MAS solid-state NMR in the 155-125 region, 30% of PAA within 2 hours have oxidized half of lignin (Fig. 4).

![Fig. 3: FT-IR spectra of wood samples treated with 30 % PAA for different reaction time](image3)

![Fig. 4: \(^{13}\)C CP/MAS NMR spectra of wood samples treated with 30 % PAA for different reaction time.](image4)
Table 1: Weight loss by PAA treatment

<table>
<thead>
<tr>
<th>% Peracetic acid</th>
<th>Duration (h)</th>
<th>Weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>8.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Fig. 5: \(^1\text{H}\) NMR spectra of substance from the extracts after 30% (green) and 42% (purple) PAA treatment recovered by precipitation with HCl.

The presence of residual lignin is also confirmed in weight loss summarized in Tab. 1. Treatment with 42% PAA and subsequent washing allowed to remove all the oxidized lignin. In contrast, 30% PAA eliminated less than one third of expected lignin amount.

Judging from the resonance intensity of \(^{13}\text{C}\) CP/MAS solid-state NMR in the 125-155 region, 30% of PAA within 2 hours have oxidized half of lignin (Fig. 4).

The \(^1\text{H}\) NMR (in DMSO) spectra of oxidized lignin recovered by precipitating the washing solution with HCl are shown in Fig. 5. The peak at around 7 ppm corresponding to aromatic ring is absent when treated with 42% PAA. On the other hand, with 30% of PAA, there is a peak at 7 ppm which confirms the recovery of degraded lignin. As the consumption of oxidants were the same in the two cases, the origin of the difference between the two cases is not clear for the moment.

Deacetylation: The absorbance of peak at 1733 cm\(^{-1}\) assigned to carbonyl of acetyl group is normalized to the absorbance at 1045 cm\(^{-1}\) of cellulose backbone. The deacetylation reaction was complete after 30 minutes using 1% NaOH solution at room temperature on wood slices (Fig 6). On the other hand, when the surface and at the middle of a 4 mm-thick block are compared, the surface was more deacetylated than the core at the low NaOH concentration, and 1% was not enough to deacetylate the core even if the pores were filled by the solution. When high NaOH concentration (5%) was used the surface and the core were completely deacetylated (Fig. 7). The sodium ions are probably retained on the surface due to the high affinity with the polysaccharide (Schwarzkopf 1932), leading to ion exchange allowing only water to penetrate. At high concentration the ion fixing sites might be saturated, leaving enough hydroxide to penetrate for the complete deacetylation reaction.
Conclusion and perspectives

Having control on the modification of the wood cell wall can expand the property range and open new utilizations of the bulk wood. Lignin can be extensively oxidized with 30% of peracetic acid within 4 hours at 70 °C by just filling the wood pores with the solution. Partially oxidized lignin can be recovered after the washing when low peracetic acid concentration is used. The hemicellulose deacetylation can be done with small amount of NaOH, but the impregnation of NaOH is impeded by the ion-exchange property of the cell wall creating a gradient of NaOH concentration inside bulk wood leading to heterogeneous deacetylation distribution under conditions where deacetylation is not complete.

Beech wood treated with 30% of PAA within 2h and washed can be compressed up to 60% without damaging the cell wall. The mechanical properties of this densified wood are being studied.

Acknowledgement

We thank Polynat for financial support.

References

Caractérisation temporelle des déformations microscopiques dans les panneaux de fibres en conditions humides.

KIBLEUR Pierre1,4, MANIGRASSO Zaira2, GOETHALS Wannes3,4, AELTERMAN Jan2,3,4, BOONE Matthieu1,4, VAN ACKER Joris1,4, VAN DEN BULCKE Jan1,4

1UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

2Department of Telecommunications and information processing - imec, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

3Department of Physics and astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium

4Ghent University Center for X-ray Tomography (UGCT), Proeftuinstraat 86, 9000 Ghent, Belgium

pierre.kibleur@ugent.be

Mots clés : fibres de bois ; MDF; microtomographie à rayons X dynamique; hygroskopie; digital volume correlation; deep learning; segmentation d’images

Contexte et objectifs

Les panneaux de fibres de bois sont des composants essentiels de la construction durable. Le réarrangement du bois après déstructuration en des panneaux homogènes et fonctionnels, fait en sorte d’élargir la part de biomasse utilisable. Malheureusement, cette étape d’ingénierie a ses inconvénients. Par exemple, nous savons que les panneaux de type MDF ne résistent pas bien à l’humidité, et ont tendance à gonfler en sa présence. Ceci pourrait être résolu par une élaboration plus éclairée de ces panneaux. Mais la connaissance et la compréhension des mécanismes à l’origine du gonflement du MDF sont pré-requises. Cependant, le MDF est un matériau très complexe. Et les outils, dont nous disposons pour l’étudier, sont poussés vers leurs limites. A l’extrême de ce qui nous est possible, nous combinons des méthodes de pointe pour permettre une analyse inédite du gonflement du MDF en situation humide, à l’échelle microscopique.

Matériel et méthodes

Le scanner à rayons X Nanowood (UGCT - UGent-Woodlab; Dierick et al., 2014), permet d’acquérir des scans à haute résolution (2.5µm; 50kV, 5W, 1s exposition, 2001 projections/scan). Un générateur d’humidité GenRH (Surface Measurements Systems, UK) crée un flux d’air humide (95% RH), qui pénètre une chambre climatique construite sur mesure pour la tomographie (Patera, 2014). Dans cette chambre, un échantillon de MDF (2x2x9mm3) présente un gonflement sous l’effet de l’humidité, tandis que des radiographies sont acquises en continu pendant plus de 5h (14007 projections au total, suffisamment pour reconstruire indépendamment 7 scans, Fig. 1).

Du fait du gonflement de l’échantillon pendant l’acquisition, les reconstructions sont floues. Elles sont rendues nettes par l’application d’un algorithme de reconstruction de pointe, capable d’interpoler les artefacts de mouvement (De Schryver et al., 2018). Dès lors, il devient possible d’utiliser la corrélation d’images (DVC) pour déduire les champs de déformation dans le MDF. Néanmoins, pour atteindre la haute résolution que requiert l’étude de fibres de bois dans cet
arrangement aléatoire qu’est le MDF, la création d’un algorithme de DVC innovant et sur-mesure était nécessaire (Manigrasso et al., en révision).

Les images 3D du matériau doivent être segmentées pour analyser les champs de déformation. Dans le MDF, deux structures de fibres sont visibles à l’œil nu: les fibres isolées d’une part, et les faisceaux de fibres (~10^1-10^2 fibres) d’autre part. Cette segmentation n’a été possible que par l’application d’un réseau de neurones profond (Kibleur et al., en révision), basé sur l’architecture U-Net3D, et entrainé sur un jeu de données relativement restreint.

Fig. 1 : La planification des scans, avec taux d’humidité correspondants (RH₀ : mesure à la sortie du GenRH; RH₁ : mesure à la sortie de la chambre climatique), et mesures du gonflement macroscopique (DIC : résultat de l’expérience préliminaire de calibration utilisant la photographie et des échantillons identiques (Kibleur et al., 2019); MCR : gonflement interpolé durant la phase de reconstruction spéciale)

Résultats et discussion

L’analyse visuelle des résultats montre que les faisceaux de fibres participent d’avantage au gonflement que les fibres de bois isolées (Fig. 2). Cette observation correspond à l’intuition que les faisceaux de fibres, dont la structure est plus difficile à imprégner avec des additifs que les fibres seules, pourraient donc rester plus sensibles à l’humidité. Pour évaluer cette hypothèse, la caractérisation quantitative des deux régimes de gonflement était nécessaire. Les faisceaux de fibres furent segmentés automatiquement dans un volume suffisamment large. C’est une étape très difficile du fait de la nature du matériau. Cependant, la stratégie basée sur l’architecture UNet3D a surpassé tous les autres algorithmes (Tab. 1 ; Kibleur et al., en révision).

Tab. 1 : Validation de la segmentation basée sur UNet3D, sur deux volumes de tests, et comparaison avec la littérature en utilisant le Matthew’s correlation coefficient (MCC)

<table>
<thead>
<tr>
<th>Segmentation</th>
<th>MCC on first volume</th>
<th>MCC on second volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of the art</td>
<td>0.435</td>
<td>0.506</td>
</tr>
<tr>
<td>(Sliseris et al., 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kibleur et al., 2021</td>
<td>0.748</td>
<td>0.705</td>
</tr>
</tbody>
</table>
Bien qu’encore imparfaite, cette segmentation demeure précise et permet de noter une différence significative entre la déformation dans les faisceaux de fibres et en dehors (Fig. 3). De plus, la même analyse (appliquée à chaque scan au cours de l’expérience) montre que les faisceaux de fibres initient le gonflement. Leur gonflement précédé toujours celui des fibres seules (Fig. 4).

![Image](image_url)

Fig. 2: La superposition du champ de déformation maximal (entre les scans 0 et VI) sur la structure du MDF révèle des zones de gonflement préférentiel, qui correspondent à des faisceaux de fibres. Les contours de la segmentation automatique de ces faisceaux de fibres (avec le deep learning) sont montrés en jaune.

Conclusions et perspectives

Nous avons combiné différentes techniques de pointe pour permettre l’analyse d’un matériau complexe composé de fibres de bois et qui est sujet au gonflement en milieu humide. Nos résultats montrent que les faisceaux de fibres constituent ici une faiblesse particulière du MDF. Les études futures devront considérer les différences profondes entre fibres et faisceaux de fibres. Par exemple, nous examinerons à présent à quel point les différences observées peuvent être dues aux disparités de revêtement (résine urea-formaldehyde, paraffine) entre fibres et faisceaux de fibres. Pour l’instant, ces additifs sont trop similaires aux fibres de bois pour être bien observés via la tomographie à rayons X. Mais d’autres techniques de pointe pourraient nous aider à trouver des indices de leur distribution.
Fig. 3 : Déformations maximales (calculées entre le premier et le dernier scan), en et en dehors des faisceaux de fibres.

Fig. 4 : Evolution de la déformation moyenne au cours de l’expérience, en et en dehors des faisceaux de fibres. Un point correspond au milieu d’un scan, comme vu sur la Fig. 1.

Remerciements

Références

Kibleur, P., Manigrasso, Z., Goethals, W., Aelterman, J., Boone, M., Van Acker, J., Van den Bulcke, J. (under review) 4D-CT characterization of local deformations in swelling MDF.

LEMAITRE Coline, ALIX Claire

1-2 Paris 1 Panthéon-Sorbonne University, UMR 8096 - ArchAm, CNRS
Coline.Lemaitre@etu.univ-paris1.fr

Mots-clefs : Archerie ; Alaska ; Arc ; Flèche ; Système ; Sélection

Contexte d’étude

Ordinairement, les arcs sont faits d’un bois rigoureusement choisi par le facteur (fabricant) d’arc pour ses propriétés mécaniques. La sélection de l’essence du bois, du grain et de sa qualité est souvent considérée comme primordiale dans la performance de l’arc. Parfois d’autres matériaux sont ajoutés car ils peuvent améliorer le stockage et la restitution d’énergie ou parer à des défauts du bois. Le terme d’arc dit renforcé ou composite est alors utilisé. Les premiers arcs composites (faits de corne sur le ventre, âme en bois et tendon au dos) sont vraisemblablement apparus durant la Protohistoire en Asie centrale et en Extrême-Orient (l’arc composite à double courbure scythe est décrit par les Assyroïens dès le 7e siècle et des représentations de l’arc scythe sont attestées dès le 4e siècle av J.-C) (Bord & Mugg, 2005 :18 ; Grayson, 2000). Également, dans ces mêmes régions et de façon plus ou moins concomitante, à l’ajout de matériaux sur l’arc s’est associée la création de profils dits recourbés et reflexes (c.-à-d., la double courbure des branches). Par la suite, vers le 4e siècle apr. J.-C. (au sein de l’empire sassanide), l’arc reflexe de tradition scythe a été « amélioré » grâce à la mise en place de siyah : des extrémités recourbées et rigides au bout des branches démultipliant la force de l’arc à double courbure (Bord & Mugg, 2005 : 42). L’arc composite recourbé ou reflexe (avec ou sans siyah) répondait alors d’une part au manque de bois de haute qualité que l’on peut trouver dans les forêts européennes (comme l’If), et d’autre part permettait d’utiliser des arcs courts et puissants pour le tir à cheval (Ibid., 2005).

Sous l’influence de phénomènes de migration d’individus et d’idées, le modèle de l’arc composite asiatique apparaît par le détroit de Béring en Amérique du Nord aux alentours du 5e-6e siècle apr. J.-C. (avec la culture Punuk), puis se diffuse vers le sud et l’est du continent, en s’adaptant aux besoins des sociétés de ces régions. Ainsi, entre le sud de la Californie jusqu’au sud de l’Alaska et dans les zones des grandes plaines nord-américaines, l’ethnographie du 18e et 19e siècle atteste de l’utilisation de l’arc renforcé de tendons collés au dos (« sinew-backed bow ») – en parallèle de l’existence préalable de l’arc simple –. Leurs profils et design sont cependant très divers selon les cultures et souvent éloignés du modèle asiatique original à double courbure et siyah (Hamm 1989 ; Hamm, 2000 : 115 ; Grayson et al., 2007 : 165, Mason, 1894 : 634). En revanche, l’influence de l’arc asiatique se retrouve de façon marquée dans le design des arcs fabriqués dans les zones arctiques et subarctiques nord-américaines – depuis le littoral du détroit de Béring jusqu’au Canada et Groenland –. En effet, un arc unique dit « free-backing »/arc à renforts de câbles de tendon noués et aux profils divers (parfois reflexe, droit, recourbé, ou décourbé, le plus souvent mixte), a été utilisé par les sociétés Néo-Inuit (Punuk, Birnirk, Thulé) avant d’être remplacé par les armes à feu à la fin du 19e siècle. Ils forment une innovation technologique qui permet d’utiliser des arcs relativement puissants en exploitant au mieux les matériaux présents dans un environnement contraignant. Il existe de nombreuses variabilités quant au design des arcs et des flèches associées, ainsi que dans la façon dont les câbles de tendon sont noués et structurés sur
l’arc (ils peuvent être tendu ou détendu par twist des câbles afin d’exercer plus ou moins de tension sur l’arc). Cette diversité a été plusieurs fois étudiée, mais le plus souvent au regard de typo-chronologies régionales en séparant l’arc de la flèche (Murdoch, 1989 ; Hamilton, 1970). Pourtant, tous deux sont profondément dépendants et fonctionnent ensemble selon les besoins et les capacités de l’archer en formant un ou plusieurs systèmes techniques et mécaniques : le système ‘arc et flèche’ . En cela, le choix d’un design et des matériaux d’un arc et d’une flèche n’est pas arbitraire mais le reflet d’une volonté d’adéquation entre ces objets pour en retirer le maximum de performance dans une situation donnée et malgré les contraintes environnementales, sociales et/ou individuelles.

Objectifs

Matériel et méthode
Notre travail se fonde sur une première analyse des corpus ethnographiques collectés parmi les communautés du littoral ouest alaskien au 19e siècle. À partir de ces analyses, nous obtenons des données qui permettrons, dans un second temps, d’aborder la complexité de l’étude des corpus archéologiques plus fragmentaires provenant de différents sites situés également à l’ouest de l’Alaska. Ainsi, à l’aide de simulations de tirs par un logiciel informatique (en ayant modélisé au préalable les arcs issus des corpus étudiés et les flèches associées) et de calculs mécaniques, nous testons les réactions mécaniques des différentes essences identifiées dans les corpus et leur adéquation avec les autres matériaux et éléments du système ; notamment les renforts de tendon sur le dos de l’arc, et la rigidité de la corde et de son matériau.

Résultats et discussion
d’arc dans le profil et la taille de celui-ci ainsi que dans la tension mise dans les câbles de tendon. Le choix de ces essences et de la qualité de leur grain au détriment d’autres essences pourtant abondantes, révèle en premier lieu la connaissance des sociétés vis-à-vis des qualités du bois d’arc (Ibid., 2003). Elle révèle en deuxième lieu l’importance de son adéquation avec le bois de la hampe de flèche, qui possède lui aussi ses propres qualités de rigidité et de densité (afin de résister à sa propre flexion et à l’énergie qui lui est transmise) (Lemaitre, 2020). En effet, en faisant varier les essences de bois pour un même arc dans le logiciel de modélisation et de simulation, nous observons de très nettes différences de valeurs dans la puissance de l’arc et dans ses capacités de transmission d’énergie à la flèche : un paramètre déterminant dans la sélection du bois de hampe de la flèche et dans ses dimensions. Nous observons également une modification de la répartition des contraintes au sein des autres matériaux, et notamment dans les câbles de tendon servant de renforts au dos de l’arc.

Conclusion

Le choix des matériaux d’un arc et d’une flèche n’est pas anodin et arbitraire, car il détermine la performance du système pour des besoins précis demandés par l’archer. L’étude de la sélection des essences de bois permet de comprendre de quelle manière et à quelle échelle cela impacte les variations observées dans le design des arcs et des flèches des sociétés de l’ouest de l’Alaska.

Si les simulations informatiques et les calculs sont une première approche d’objets fragiles et fragmentaires, il existe toutefois quelques limitations ; notamment l’impossibilité d’entrée des paramètres comme le fil du bois, ainsi que la particularité du bois de compression qui semble pourtant être un facteur important de la composition des arcs arctiques (Ibid., 2003). De plus, il sera nécessaire de réaliser, en complément, une étude du comportement des câbles de tendon face à la rigidité du bois d’arc, ainsi que leur importance dans la performance de l’arc.

Remerciements :

Je souhaite remercier tout d’abord Claire Alix (co-directrice de ma thèse) pour son apport à la recherche sur les bois d’arc dont la détermination de nombreuses essences d’arcs archéologiques, ainsi que pour son aide globale dans ce projet d’étude. Je souhaite également remercier Stefan Pfeifer et Olivier Collet, mathématiciens et mécaniciens, qui ont inventé et amélioré le logiciel de modélisation d’arc *VirtualBow*.

Références bibliographiques :

Étude des propriétés physiques et chimiques des parois cellulaires végétales par microscopie optique en champ proche multimodale

A. Charrier1, A. Normand1,2, A. Passian3, P. Schaefer4, A. L. Lereu2,*
1 Aix Marseille Univ, CNRS, CINaM, Marseille, France
2 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
3 Oak Ridge National Laboratory, Oak Ridge, TN, USA
4 Neaspec GmbH, Munich, Germany

*Contact Email: aude.lereu@fresnel.fr

En tant que ressource durable, le bois est devenu un matériau de choix non seulement pour les marchés de la construction, du papier et des biocarburants, mais aussi pour le développement de composants de bâtiments intelligents, ou pour l'ingénierie de nouveaux matériaux d'origine végétale. Ce biomatériau est très attrayant pour ses propriétés mécaniques, chimiques, thermiques et optiques. Cependant, l’une des préoccupations majeures de l’industrie du bois est de gérer la biodégradabilité, l'instabilité et la rentabilité de ce biomatériau en développant des traitements chimiques et/ou physiques. Ces traitements induisent des changements locaux dans la composition chimique des parois cellulaires végétales (PCW), affectant ainsi leurs propriétés physiques et morphologiques. Malgré les récentes études sur ces matériaux à des échelles proches des distributions moléculaires, de nombreuses questions restent en suspens : "Comment les modifications chimiques impactent les propriétés physiques (mécaniques, hygroscopiques, thermiques, optiques) à l'échelle nanométrique ?", "Comment les propriétés physiques modifiées de la PCW peuvent-elles avoir un impact positif sur l'industrie du bois ?"…

La microscopie optique en champ proche dans le mode à diffusion couplé à de la spectroscopie IR permet de cartographier à l’échelle nanométrique les informations structurelles, chimiques et physiques (Voir Figure 1). Cette technique est basée sur l’interaction de la paroi cellulaire avec une pointe nanométrique, amenée dans le champ proche de l’échantillon, à quelques dizaines de nanomètres. On ajoute à cela de la lumière envoyée sur l’ensemble pointe-paroi et par des jeux interférométriques et des traitements de l’information, on collecte le signal optique en champ proche. La lumière envoyée ici est absorbée différemment par les couches constituant la paroi végétale qui sont chimiquement différentes. Nous avons utilisé une source infrarouge à large bande pour obtenir des informations spectrales résultant de l’absorption de la lumière par la paroi. Nous avons choisi d’utiliser l’infrarouge car les fréquences de vibrations liées aux polymères de la paroi (cellulose, hémicellulose et lignine) se trouvent principalement dans cette gamme spectrale. Cela nous permet de remonter à la composition chimique de la
paroi. En plus de l’absorption, nous avons aussi mesuré la réflectivité. L’accès à ces deux paramètres nous permet ainsi de remonter aux constantes diélectriques à l’échelle de la paroi de façon non-destructive et in-situ, c’est-à-dire sans toucher à la structure interne du bois. Enfin, par la mesure de la phase mécanique, on arrive à extraire une information liée aux propriétés viscoélastiques des parois.

Nous présenterons les cartographies chimiques, optiques et mécaniques obtenue par la technique de microscopie optique en champ proche couplée à la spectroscopie infrarouge (nano-FTIR Neaspec Gmbh). Pour illustrer l’apport de cette technique, nous étudierons un processus de délignification et mettrons plus particulièrement en évidence la récalcitrance de la lignine. La délignification est une étape majeure vers la production à grande échelle de biocarburant. Grâce aux différents traitements chimiques ou biologiques développés, la structure et les propriétés chimiques des PCW sont modifiées. Comprendre la décomposition de la biomasse en termes de changements structuraux, de composition chimique ou de propriétés physiques, serait donc un atout majeur pour contrôler le processus de délignification. Nous montrerons que le protocole d’extraction chimique de la lignine proposé ne résout pas entièrement le problème de la récalcitrance. Notamment il a une efficacité limitée sur la lignine de faible densité qui est plus soluble.

Enfin, grâce au Nano-FTIR, nous avons également évalué in situ, pour la première fois, les propriétés optiques locales du PCW associées à sa variabilité chimique et structurelle locale. Ceci est illustré en Figure 2, par les cartographies de n et k pour la cellulose et pour la lignine extraites des mesures en réflectivité et absorption. Ces propriétés n’étaient pas mesurables auparavant avec les techniques optiques conventionnelles. Nous présenterons ainsi les variations de l’indice de réfraction complexe à l’échelle de la PCW.

Le contrôle de haute précision des propriétés mécaniques et optiques dans la production de bois reste une préoccupation majeure vers une utilisation plus efficace et raisonnable de ces biomatériaux qui n’ont pas fini de répondre à nos besoins. Dans ce cadre, nous montrons que la technique de microscopie optique en champ proche peut faciliter de manière unique la compréhension de la morphogenèse du bois à l’échelle des parois cellulaires. Par exemple, elle peut fournir des informations essentielles pour l’ingénierie contrôlée du bois en vue du développement de composants biodégradables de haute technologie.

Remerciements

E), par le CNRS à travers le programme international de coopération scientifique - PICS 2019 (A. L. LEREU) et par le BioEnergy Science Center de l'ORNL.

Référence

Upcycling de déchets de cuir : de l’élaboration de nouveaux matériaux à l’émergence d’une nouvelle marque

LEROYER Léo1, FERNANI Valérie2, CHARRIER Bertrand1

1Université de Pau et des Pays de l’Adour, E2S UPPA, Mont de Marsan, France
2API’UP, 108 Avenue Lartigau, Capbreton, France
leo.leroyer@univ-pau.fr

Mots clés : cuir, upcycling, composite, colle à bois

Contexte et objectifs

API’UP est une association spécialisée dans la collecte et l’upcycling de déchets avec une approche responsable et solidaire. En association avec un cabinet de design (La Racine), elle propose une gamme de mobilier et d’objets contemporains éco-conçus. En 2018, API’UP a démarré un programme de R&D, dénommé MATERIA, de manière à diversifier les matières valorisées en complément du bois, initialement seul à l’être, en intégrant le cuir et le textile. Dans ce cadre, l’antenne montoise du laboratoire IPREM - UPPA (équipe Xylomat) a été sollicitée pour développer de nouveaux matériaux à partir de ces ressources.

L’objectif initial était d’étudier le comportement de ces matières en thermocompression pour la fabrication de panneaux. Ces expérimentations ont débuté en 2018 et ont permis de sélectionner la colle qui semblait la plus pertinente. Il s’agit d’une colle naturelle traditionnellement utilisée dans l’industrie du bois. S’en est suivi un développement progressif jusqu’à l’optimisation des produits finis en vue de la commercialisation, sous la nouvelle marque OSPHER, créée par API’UP.

L’objet de ce poster est de présenter les dernières étapes de prototypage jusqu’à la préproduction des panneaux pour l’exposition « Le FRENCH DESIGN » de la galerie VIA en octobre et novembre 2021.

Matériel et méthode

Le cuir a été collecté par API’UP auprès d’entreprises partenaires du sud ouest de la région Nouvelle Aquitaine, puis broyés par leur soin à l’aide d’un broyeur à couteaux à une granulométrie de 3 mm. Les mélanges de cuir de manière à obtenir les coloris souhaités pour les panneaux finis ont été élaborés par Léa Diaz, doctorante au laboratoire.

Le mélange broyé de cuir/colle naturelle a été effectué dans un mélangeur à pales, fabriqué sur mesure pour le laboratoire.

Les panneaux ont été pressés dans des moules à l’aide d’une presse pilote (PAGNONI MONZA, instrumentalisée par la société 3R (Montauban), de capacité 100 tonnes, dimensions des plateaux 600x600 mm). Quatre types de moule ont été utilisés : 2 moules en polyoxyméthylène (POM) pour les essais de petites dimensions, un moule en bois revêtu d’un film téflon ou plastique et un moule en aluminium chemisé POM pour le prototypage des panneaux de taille 1. Les moules en POM et aluminium ont été conçus et modélisés au laboratoire et usinés par une entreprise sous-traitante d’API’UP, tandis que les moules en bois ont entièrement été fabriqués au laboratoire (modélisation 3D et usinage à l’aide d’une fraiseuse Charly 2U, Charlyrobot).
Les panneaux obtenus ont ensuite été séchés dans un séchoir chauffé à 40°C pendant 2 jours, puis laissés à température ambiante pendant 2 semaines.

Les montants en bois des panneaux cuir ont été fabriqués par l’atelier d’API’UP. Les essais de charnières modulables en composite PLA/bois ont été remodélisés et fabriqués au laboratoires (logiciel cura, imprimante 3D Ultimaker 2+).

Résultats et discussion

Après 2 années de développement en partenariat avec la société API’UP, un composite à base de cuir broyé et d’une colle naturelle a été mis au point au laboratoire. Le procédé et les formulations font actuellement l’objet d’un dépôt de brevet. Il s’agissait alors de trouver les meilleures méthodes de valorisation de ce matériau pour le compte de l’entreprise.

Design et Prototypage

Après concertation avec le studio La Racine, une application comme panneaux séparateurs de bureaux a été envisagée, suite aux performances mécaniques satisfaisantes et aux premiers résultats encourageants d’absorption acoustique du matériau.

En accord avec le marché cible (mobilier professionnel haut de gamme), la modularité a été une des priorités. Par ailleurs, les dimensions des plateaux de la presse ne permettaient pas d’envisager des panneaux de dimensions supérieures à 500x500 mm.

Des éléments séparateurs de bureaux empilables et articulables ont ainsi été imaginés par le studio de design. Par ailleurs, même si les propriétés mécaniques ont permis une solidité suffisante pour une manipulation des panneaux, il a rapidement été envisagé de rajouter une structuration supplémentaire pour assurer la solidité de l’ensemble.

Une première version (V1), intégrant 4 tubes cintrés collés entre deux demi-panneaux, sont présentée dans les Figures 1 et 2. Les extrémités des tubes permettent de joindre les éléments entre eux de manière à apporter la modularité : des jonctions droites pour l’empilement et des jonctions articulées sur les côtés pour pouvoir former un angle entre deux colonnes.

Les prototypes V1 ont été produits à l’aide d’un moule en bois, conçu au laboratoire. Les deux demi-panneaux ont été collés avec une colle vinylique, avec 4 arceaux en cuivre cintrés au laboratoire. Malgré un enthousiasme procuré par le design, il s’est avéré que la solidité de l’ensemble n’était pas suffisante, en particulier entre les arceaux de renfort. Une solution aurait été de relier ces 4 « U » pour former une structure plus rigide, mais aurait entraîné un surcoût trop important. Par ailleurs, la fabrication impliquant la préparation de deux demi-panneaux à coller semblait couteuse et compliquée à industrialiser.

Une seconde version (V2) a ainsi été imaginée, intégrant, cette fois des montants en bois sur les côtés pour assurer la rigidité verticale, comme indiqué dans la figure 3.
Un premier moule en bois a permis d’obtenir une première version des prototypes V2. Après optimisations, plusieurs éléments ont été constatés : bonne tenue mécanique des panneaux, surface un peu pelucheuse et problème de finition des arêtes, rigidité insuffisante (nécessité de rajouter 2 tubes aluminium à l’intérieur des panneaux) et usure des revêtements internes du moule en bois (film adhésif téflon pour les cotés et film plastique pour les faces). La version (V2) a été retenue et a nécessité de nombreuses optimisations.

Dans un premier temps, deux moules en POM de petites dimensions ont été utilisés pour améliorer la finition des arêtes, et en particulier pour étudier la possibilité de former des congés d’arrêtes (4 rayons évalués). Que ce soit en pressage symétrique (2 pistons) ou non, les arêtes n’étaient pas correctement comblées et il a été décidé d’abandonner les congés d’arrêtes au profit d’arrêtes droites.

Selon les observations précédentes, un second moule, pour la pré-production, a été imaginé. Il a été conçu en aluminium pour sa conductivité thermique ainsi que pour sa meilleure résistance mécanique comparativement au POM ou au bois. Cependant, il est apparu que le composite adhérait à l’aluminium lors du pressage. Deux produits de démoulage ont alors été utilisés. Cependant ils n’ont pas donné satisfaction car ils ont adhéré malgré le démoulant liquide. Finalement, pour s’affranchir des problèmes d’adhérence, un moule en aluminium chemisé en POM a été fabriqué. Il a été construit à partir d’une structure aluminium démontable (4 cotés + 4 angles), de 2 pistons aluminium et d’un chemisage POM (2 plaques inférieure et supérieure, et 4 cotés), comme présenté dans les figures 4 et 5.

Après optimisation (mélange, température, cycle de pressage, …), des panneaux très cohésifs ont été obtenus, avec une surface non pelucheuse. Par contre, les tubes internes ont induit des marques sur les faces des panneaux (acceptables pour l’entreprise), tandis que les arêtes ont présenté quelques défauts sous forme de bourrelet. Un post-usinage des arêtes a été nécessaire pour obtenir une finition satisfaisante. Les panneaux ainsi produits ont pu être fixés sur les montants en bois fabriqués par API’UP.
De nombreuses discussions ont été menées autour du système d’articulation entre les éléments du paravent (panneaux composite cuir + montants en bois), en particulier via l’utilisation d’« équerres » en composites PLA/bois. Finalement, le système retenu a été une fixation des éléments par une charnière « classique », assurant une stabilité satisfaisante, mais limitant la modularité.

Propriétés acoustiques

Après optimisation, il s’est avéré que le coefficient d’absorption acoustique mesuré par un tube de Kundt selon la méthode développée par Lacoste et al. (2015) était supérieur à 0,4 entre 2 et 6,5 kHz, mais en dessous pour des plus basses fréquences, et ce pour trois couleurs de panneaux évaluées (vert, bleu clair et bleu foncé). Ainsi, les performances acoustiques sont proches de celles de panneaux de liège aggloméré de même épaisseur (20 mm), sur la gamme de fréquence 500-1000 Hz et 4-6,5 kHz, mais inférieures pour la gamme 1250 à 3000 Hz, comme présenté Figure 6.

Conclusion et perspectives

Après 3 années de R&D en collaboration avec API’UP, des éléments de mobilier professionnel ont été imaginés, conçus et fabriqués en laboratoire, en partenariat avec le studio La Racine. A l’issue de cette aventure, une nouvelle marque a vu le jour, créée par API’UP et dénommée OSPHER (La Racine et al.), afin de commercialiser les produits intégrant le nouveau matériau élaboré dans le cadre de ce projet. Les premiers éléments sont actuellement exposés à Paris dans le cadre de la Paris Design Week, Le FRENCH DESIGN à la galerie VIA.

D’autres matériaux à partir de cuir recyclé ont également été obtenus lors de ce projet MATERIA, en particulier des composites de faible densité possédant des performances thermiques et acoustiques. Nous avons également pu créer des panneaux de plus forte densité avec des performances mécaniques permettant une utilisation structurelle. Par ailleurs, ces travaux montrent qu’une colle à bois naturelle très utilisée jusqu’au début du XXème siècle peut permettre aujourd’hui la mise au point de nouveaux matériaux à forte valeur environnementale. Enfin, des recherches sont toujours en cours, avec notamment le démarrage prochain d’une étude pour l’optimisation du défibfrage du cuir (projet UPCY CUIR financé par la Région Nouvelle Aquitaine).

Remerciements

Références

Fabrication de placage multicouche en bois pré-imprégné par une résine furfurylique

MAGNE Adrien¹, OBOUNOU AKONG Firmin¹, GERARDIN Philippe¹

¹LERMAB, EA 4370, Université de Lorraine, Faculté des Sciences et Technologies, BP 70 239, F-54506 Vandoeuvre-lès-Nancy, France

adrien.magne@univ-lorraine.fr

Mots-clés :
Placage, alcool furfurylique, résine thermodurcissable, imprégnation sous vide partiel

Contexte et objectifs
La quasi-totalité du marché des composites actuels est représentée par l’utilisation massive de polymères polluants et provenant de ressources fossiles épuisables et/ou non biodégradables, ne profitant pas à l’écologie. Le remplacement progressif de ces polymères est une solution envisagée et entreprise dans le domaine industriel. En effet, l’intérêt des entreprises pour les composites naturels provenant de ressources naturelles ne cesse de croître en raison d’une demande publique de matériaux sûrs, durables et écologiques qui est en plein essor.

A travers ce contexte, le Laboratoire d’Etudes et de Recherches sur le Matériau Bois (LERMab) mène un projet visant à fabriquer un placage biosourcé à base de plusieurs plis de feuille de bois massif pré-imprégnées et liées par l’intermédiaire d’une résine issue de matériaux lignocellulosiques. Cette résine est obtenue à partir d’un produit biosourcé : l’alcool furfurylique. Ce produit est un dérivé du furfural obtenu par déshydratation puis hydrogénation de sucres en C5 comme le xylose. Le xylose est lui-même obtenu à partir d’une hydrolyse acide des pentosanes présents dans les bois de feuillus ou provenant des sous-produits agricoles. Le placage est fabriqué à partir d’une méthode de compression à chaud des différents plis au sein d’un moule.

Matériel et méthode
Des placages provenant de deux essences ont été étudiés, à savoir le chêne (Quercus robur) et l’érable (Acer pseudoplatanus). Pour chaque essence, les échantillons sont prélevés sur des feuilles de placage d’épaisseurs comprises entre 0,52 et 0,57 mm et découpés sous forme de rectangles aux dimensions de 80 mm x 40 mm selon le sens longitudinal et tangentiel des fibres du bois. Après un étuvage des placages pour atteindre une masse anhydre, les échantillons subissent un processus d’imprégnation. La résine est injectée dans le bois par une méthode d’imprégnation sous vide partiel au sein d’un dessiccateur. Cette résine polymérique fait office de matrice dans le composite. Elle est obtenue par la mise en solution de l’alcool furfurylique dans l’eau avec différents catalyseurs, l’acide tartrique ou l’anhydride maléique. Une fois imprégné, les échantillons sont stockés dans du papier aluminium durant 40h. La dernière étape consiste à assembler les feuilles de bois imprégnées en alternant le sens du fil de chaque pli à 90°. Le placage ainsi formé est pressé et chauffé ce qui permet une polymérisation optimale au sein et entre les différents plis que constituent le placage.

Des échantillons individuels sont aussi traités de manière analogue aux placages et pesés à chaque étape clé. Le but est de pouvoir suivre le gain de masse dû à la polymérisation de la résine au sein des parois cellulaires du bois qui a lieu durant l’imprégnation et le traitement thermique.
Résultats
Les placages et échantillons individuels sont ensuite caractérisés visuellement, vérification de l’aspect du placage et de l’adhérence dû à la polymérisation de l’alcool furfurylique entre chaque pli, et chimiquement, par spectroscopie infrarouge afin de vérifier la présence du polymère d’alcool furfurylique obtenu par polycondensation.

Références
Prabu Satria Sejati, Aurélia Imbert, Christine Gérardin-Charbonnier, Stéphane Dumarçay, Emmanuel Fredon, Philippe Gérardin, Tartaric acid catalyzed furfurylation of beech wood, Wood Sci Technol (2017) 51 : 379-394
Genetic and environmental determinants of relationships between wood properties, water use efficiency and biomass production

Makouanzi Ekomo Chrissy Garel1,2,3, Bouvet Jean-Marc4,5, Brendel Oliver6, Laclau Jean-Paul7, Bouillet Jean-Pierre5,7, Epron Daniel6,9

1Université Marien NGOUABI, Brazzaville, Republic of Congo, 2Centre de Recherche sur la Durabilité et la Productivité des Plantation Industrielles, Pointe-Noire, Republic of Congo, 3Institut national de Recherche Forestière, Brazzaville, Republic of Congo, 4Cirad, UMR AGAP, Amélioration Génétique et Adaptation des Plantes Tropicales et Méditerranéennes, Montpellier, France, 5Cirad, dispositif de Recherche et d’Enseignement en Partenariat “Forêts et biodiversité à Madagascar”, Antananarivo 101, Madagascar, 6Université de Lorraine, AgroParisTech, INRA, UMR SILVA Nancy, France, 7Cirad, UMR Eco&Sols, F-34398 Montpellier, France, 9Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

garelmak@yahoo.fr

Key words: Wood chemistry; Eucalyptus hybrid Growth; Water use efficiency; Genetic correlation

Background and purpose

The possibility of reconciling the objectives of increasing wood production and resource use efficiency is one of the challenges of sustainable forest management. Selection criteria enhancing the efficiency of water use for biomass production are therefore required to develop genotypes better adapted to water-limited areas making it possible to use less water for the same biomass production. These critical questions related to selection for wood products and water resource use efficiency have promoted research in ecophysiology and genetics, with some efforts to combine them. Research is still needed to gain insight into the genetic and environmental effects in phenotype variation and plasticity. The relationships between WUE (water use efficiency), growth and wood traits have been little documented, and the results are still partial and sometimes inconsistent. Depending on experiments, biomass production and WUE can be positively correlated (Le Roux et al. 1996), negatively correlated (Monclus et al. 2005) or not correlated (Cumbie et al. 2011). It is difficult to determine whether these divergent results are due to sampling or to species or environmental effects. A meta-analysis showed a positive global intra-specific correlation between δ\textsubscript{13}C and height (Gr = 0.28, P < 0.0001), a stronger correlation for biomass than for height (Gr = 0.68, P < 0.0001), and a non-significant correlation for diameter (Gr = 0.04, P < 0.64) (Fardusi et al., 2016). However, the authors did not study the influence of genetic and environmental effects on these correlations. Better knowledge of genetic and environmental correlations is a key issue in guiding tree breeding programs. Several questions must be addressed, especially for Eucalyptus species planted in marginal zones where water availability may become a critical issue. What is the contribution of additive and non-additive gene effects in the expression of wood properties, WUE and biomass production? What is the magnitude of the genetic and environmental correlations between wood properties and other traits?

The objectives of our study were: (i) to gain insights into the genetic and environmental components controlling wood chemical traits, δ\textsubscript{13}C and stem volume, and (ii) to assess the genetic and environmental correlations between those traits.
Material and methods

Field experimental data

The study was conducted using a Eucalyptus progeny trial located east of Pointe-Noire (11°59′21″E, 4°45′51″S) in Republic of Congo. Rainfall averaged 1200 mm/year. The soils were deep Ferralic Arenosols characterized by low water retention, a very low level of organic matter and poor cationic exchange capacity. The plant material resulted from controlled pollination crosses of thirteen *Eucalyptus urophylla* females and nine *Eucalyptus grandis* males according to a factorial mating design. These crosses generated 69 full-sib families and 1415 progenies. Each of the 1415 progenies was replicated three times using cuttings and a clonally replicated progeny test was planted at a stocking density of 833 trees ha⁻¹. The field experiment was a complete block design with three replications. Twenty-five trees replicated in three blocks represented each full-sib family.

Measured traits

Total tree height (HT) and circumference at breast height (C) were measured 55 months after planting and used to calculate a proxy of the total tree volume (V55) using the cylinder formula with a stem form factor of 0.3. NIRs models were used to estimate Klason lignin (KL) and holo-cellulose content (HCEL). We used existing NIRs models of multiple Eucalyptus species that included samples from this study (Chaix et al. 2015). Stable carbon isotope composition (δ¹³C) of wood was measured on the same samples as those used for NIRs after grinding them to a fine powder (< 0.1 mm). One mg of the powder was enclosed in a tin capsule and analyzed with an elemental analyzer coupled to an isotope-ratio mass spectrometer.

Statistical model

We used the following linear mixed model combining genetic and environmental effects to analyze the data:

\[y = X\beta + Z_{\text{col}} + Z_{r:b} + Z_{a_1} + Z_{a_2} + Z_{d} + \epsilon \]

where \(y \) was the vector of the phenotypic variable, \(\beta \) was the vector of fixed effects due to the general mean and blocks, \(col \) was the vector of random spatial environmental effects due to the field design column, \(r:b \) was the vector of random spatial environmental effects due to field design row by block interaction, \(\epsilon \) was the vector of random spatial environmental effects due to microenvironmental effect. The genetic effects were defined by: \(a_1 \) (female additive), \(a_2 \) (male additive) and \(d \) (dominance). \(X, Z_{\text{col}}, Z_{r:b}, \) and \(Z_{d} \) were the incidence matrices connecting the fixed and random effects to the data. The variance component estimation based on the REML method and the BLUP calculations were done using the ASReml version 3 package implemented in R software (R Development Core Team, 2011). The correlation estimates were obtained using model shown above in the multivariate formulation.

Results and discussion

Variance components

Phenotypic variabilities were highly variable depending on the traits (Table 1). The log-transformed volume stood out with a coefficient of variation (CV) of 18.9%, whereas the wood property traits showed CVs around 5.0%. The δ¹³C values converted to intrinsic WUE (Wi), showed a CV of 9.0%. The female and male variance (\(\sigma_{a_1}^2 \) and \(\sigma_{a_2}^2 \), respectively) showed close estimates for V55 and δ¹³C (and Wi), whereas \(\sigma_{a_1}^2 \) was much higher than \(\sigma_{a_2}^2 \) for HCEL and KL. This result suggested a higher variability of the *E. urophylla* parent set than the *E. grandis* parent set for these latter traits and showed a marked dominance variance
for volume and stressed a preponderance of the additive variance for chemical wood traits (Makouanzi et al. 2018).

Table 1: Mean and variance components for additive female (σ²af), additive male (σ²am), dominance (σ²d) and residual (σ²e) effects and variance ratios for the traits measured at age 55 months: the individual tree volume (V55), the stable carbon isotope composition (δ¹³C), the intrinsic water use efficiency (Wi), the klason lignin content (KL) and the holo-cellulose content (HCEL). Standard errors of the estimations (SE) and coefficients of phenotypic variation (CV) are indicated.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>CV (%)</th>
<th>σ²af</th>
<th>SE</th>
<th>σ²am</th>
<th>SE</th>
<th>σ²d</th>
<th>SE</th>
<th>σ²e</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V55 (m³)</td>
<td>3.95</td>
<td>−4.00</td>
<td>5.89</td>
<td>28.83</td>
<td>0.302</td>
<td>0.139</td>
<td>0.236</td>
<td>0.138</td>
<td>0.742</td>
<td>0.283</td>
<td>0.882</td>
<td>0.048</td>
</tr>
<tr>
<td>δ¹³C (0/00)</td>
<td>−29.37</td>
<td>−31.14</td>
<td>−27.24</td>
<td>nd</td>
<td>0.081</td>
<td>0.022</td>
<td>0.096</td>
<td>0.023</td>
<td>0.000</td>
<td>0.000</td>
<td>0.121</td>
<td>0.006</td>
</tr>
<tr>
<td>Wi (µmol mol⁻¹)</td>
<td>62.31</td>
<td>42.70</td>
<td>85.84</td>
<td>9.32</td>
<td>9.891</td>
<td>2.709</td>
<td>11.768</td>
<td>2.810</td>
<td>0.000</td>
<td>0.000</td>
<td>14.851</td>
<td>0.747</td>
</tr>
<tr>
<td>KL (%)</td>
<td>27.73</td>
<td>20.98</td>
<td>34.74</td>
<td>6.32</td>
<td>0.817</td>
<td>0.215</td>
<td>0.383</td>
<td>0.196</td>
<td>0.000</td>
<td>0.000</td>
<td>1.397</td>
<td>0.068</td>
</tr>
<tr>
<td>HCEL (%)</td>
<td>67.19</td>
<td>58.93</td>
<td>76.32</td>
<td>3.64</td>
<td>1.079</td>
<td>0.319</td>
<td>0.444</td>
<td>0.299</td>
<td>0.000</td>
<td>0.000</td>
<td>2.369</td>
<td>0.115</td>
</tr>
</tbody>
</table>

*The average of V55 without logarithmic transformation was 0.079 m³ and its coefficient of variation was 74%.

Correlations

Globally, our results stressed the low to moderate genetic and environmental correlations between traits (Table 2).

Table 2: Genetic, environmental and phenotypic correlations between the different traits (the volume (V55), the intrinsic water use efficiency (Wi), the klason lignin content (KL) and the holo-cellulose content (HCEL). ρᵃ, ρₑ, ρₐ and ρₚ are the additive, dominance, total genetic, residual (environmental) and phenotypic genetic correlations.

<table>
<thead>
<tr>
<th>Traits</th>
<th>V55</th>
<th>HCEL</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρᵃ</td>
<td>ρₑ</td>
<td>ρₐ</td>
</tr>
<tr>
<td></td>
<td>ρₚ</td>
<td>ρₑ</td>
<td>ρₚ</td>
</tr>
<tr>
<td></td>
<td>ρₑ</td>
<td>ρₚ</td>
<td>ρₑ</td>
</tr>
<tr>
<td></td>
<td>ρₚ</td>
<td>ρₑ</td>
<td>ρₚ</td>
</tr>
<tr>
<td></td>
<td>ρₑ</td>
<td>ρₚ</td>
<td>ρₑ</td>
</tr>
<tr>
<td></td>
<td>ρₚ</td>
<td>ρₑ</td>
<td>ρₚ</td>
</tr>
<tr>
<td>HCEL</td>
<td>0.118</td>
<td>0.000</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.000)</td>
<td>(0.126)</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.031)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>KL</td>
<td>0.238</td>
<td>0.000</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.000)</td>
<td>(0.146)</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Wi</td>
<td>-0.260</td>
<td>0.000</td>
<td>-0.260</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.000)</td>
<td>(0.088)</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
</tr>
</tbody>
</table>

We noted small positive additive genetic correlations (ρᵃ < 0.300) between V55 and wood chemical traits and low negative additive genetic correlations between V55 and δ¹³C (or Wi) (ρᵃ = −0.260). Similar results were reported for Eucalyptus robusta (Rambolarimanana et al. 2018), but previous studies showed that wood chemical traits and volume are generally poorly correlated in Eucalyptus (Hein et al. 2012). More generally, results on other species show small to moderate correlations between δ¹³C and growth traits in, for example, Populus sp. (Verlinden et al. 2015). Studies addressing the correlation between wood δ¹³C (Wi) and growth traits are scarce, and differences between hardwood and softwood species are still poorly documented. The origin of correlation, pleiotropy or linkage disequilibrium (statistical association) remains unknown. With our data, the additive correlation between Wi (δ¹³C) and V55 was negative (−0.260) and the environmental correlation was positive (0.195). The sign inversion between additive and environmental correlations suggested a correlation due to linkage disequilibrium (Gallais 1990). However, the estimates were small with high standard error and further studies are needed to draw relevant conclusions. Correlations between wood
chemical traits and δ\(^{13}\)C (or Wi) were not strong and negative estimates were observed (\(\rho_a = -0.101\) and \(\rho_a = -0.192\) for HCEL and KL, respectively). The correlations due to the dominance effect were null for all the combinations of δ\(^{13}\)C (or Wi), KL or HCEL because the estimates of the dominance variance were null. As a result, the total genetic correlations were equal to the additive genetic correlations. Most of the environmental correlations were small (\(\rho_e < 0.200\) in absolute value), except between V55 and KL (\(\rho_e = 0.344\)). Similar patterns were noticed for phenotypic correlations.

Conclusion and perspectives

Our study provides the combination of traits related to biomass, wood chemical properties and water use efficiency in the multi-trait selection of Eucalyptus. We noted a preponderance of the additive variance for chemical wood traits, essentially due to the female variance. The small positive additive genetic correlations were noted between tree volume and wood chemical traits and low negative additive genetic correlations between tree volume and water use efficiency. Our findings are encouraging and show that inclusion of wood and δ\(^{13}\)C in the selection process may lead to Eucalyptus varieties adapted to marginal zones still presenting good performance for biomass and wood chemical traits.

Acknowledgments

We are grateful for the NIRS analyses assistance of Gilles Chaix, UMR AGAP, CIRAD.

References

10èmes journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021
Le Bois pour les structures des véhicules (Projet BOOST) : caractérisation mécanique et physique locale de placages pour la conception optimisée de structures

MARC Caroline¹, MARCON Bertrand¹, DENAUD Louis¹, GIRARDON Stéphane¹, VIGUIER Joffrey, YAICH Mariem¹

¹Arts et Metiers Institute of Technology, LABOMAP, Université Bourgogne Franche-Comté, HESAM Université, F-71250 Cluny, France
Caroline.Marc@ensam.eu

Mots clés : bois ; structure ; véhicule ; térahertz ; caractérisation ; placage

Contexte, positionnement et objectifs de la thèse

Objectifs et hypothèses de recherche
La thèse s’inscrit dans le cadre du projet ANR BOOST multipartenaire dont l’objectif général est de faire la démonstration de la possibilité de l’utilisation du bois, sous forme de placages en produit lamellé, pour son utilisation comme matériau structurel pour les véhicules. Ses principaux atouts sont ses bonnes propriétés mécaniques rapportées à sa masse volumique et son impact environnemental avantageux lorsqu’il est produit et transformé localement. BOOST cible plus particulièrement les contreplaques pour leur faible coût et le domaine des transports : aéronautique, naval, automobile ferroviaire. Jusqu’à présent, le contreplaqué, constitué de plusieurs plis de diverses essences orientées simplement à 0° ou 90° n’a été utilisé comme matériau structurel que dans l’aviation jusqu’à la deuxième guerre mondiale (1) et ponctuellement dans l’automobile (2) et le nautisme de loisir. Aussi, il existe un vaste champ de recherches pour ce matériau seul ou utilisé en sandwich, et BOOST a choisi de prioriser trois thématiques scientifiques.

Dans le cadre de la bioéconomie, il importe de maximiser l’utilisation des ressources locales. Aussi dans BOOST, il est fait le choix de se limiter à deux essences feuillues qui sont présentes sur pratiquement tout le territoire : le peuplier et le hêtre (3). Ces essences prisées des dérouleurs pour leur homogénéité (4) ont de plus l’avantage d’avoir des caractéristiques mécaniques très différentes : modules d’élasticités longitudinaux à 12% d’humidité absolue de l’ordre de 9.8 et 15.3 GPa respectivement (4) ce qui permet d’imaginer des stratifiés aux propriétés contrastées. De plus, pour valoriser au mieux la ressource locale tout en maîtrisant les coûts, contrairement aux contreplaqués aéronautiques, ces matériaux devront être pris en compte avec leurs défauts comme la présence des nœuds, les variations locales d’orientation des fibres induites par ces derniers et les fissurations induites lors du procédé de déroulage (Figure 1). En effet, même de légères variations d’orientation des fibres peuvent modifier de manière importante les propriétés mécaniques (réduction de 50% du module d’élasticité longitudinal équivalent partant d’une inclinaison de 13°) (5). De plus, la mesure de la densité locale des placages avec une instrumentation légère (hors RX) reste un verrou technologique que nous proposons de lever lors de ce projet en exploitant une technologie non ionisante (moins de risque pour les opérateurs et intégration sur chaine de production facilité).
Contrairement au cas des composites dont on maîtrise la fabrication, le bois résulte d’un processus naturel et spécifique aux conditions de croissance de l’arbre (influences combinées de la qualité des sols, sylviculture, maintien de la verticalité de l’arbre sous l’action du vent et du soleil…). La seule solution, qui est d’ailleurs utilisée dans le classement mécanique du bois pour un usage structurel, consiste à contrôler chaque sciage. Il n’existe pas encore de contrôle normalisé de chaque pli des contreplaqués bois, au contraire des poutres lamellées-collées, car à ce jour il n’existe pas d’outil industriel de mesure de l’orientation des fibres des placages permettant d’intégrer ce paramètre essentiel. Le LaBoMaP a développé deux bancs de mesure (Figure 2 et (6)) via méthode laser (diffusion de la lumière privilégiée dans la direction des fibres). De plus, comme pour les composites, c’est l’orientation des fibres du bois qui pilote principalement (ordre 1) les propriétés mécaniques du matériau (la variation locale de densité étant d’ordre 2 pour les essences ciblées dont la variation est faible). Sa mesure permet de modéliser finement les propriétés de planches ou de placages de bois (6-7). La cartographie d’orientation des fibres (6-7) lors du déroulage de Douglas peut être intégrer dans un modèle mécanique analytique de composition de LVL pour en prédire les propriétés (Figure 2).

Figure 2 : Stratégie de mesure des placages en lignes jusqu’à la prédiction des propriétés mécaniques des produits d’ingénierie (LVL) (6).

Pour la mesure de la fissuration cyclique des placages (due au procédé même de déroulage) pour des essences qualifiées d’homogènes (Figure 3), plusieurs méthodes de mesure en ligne et hors lignes ont été mises au point qui permettront de proposer, soit une mesure systématique et fine pour quelques placages représentatifs, soit d’appliquer des critères moyens et d’utiliser des lois statistiques permettant de proposer une répartition et une profondeur moyenne des fissures pour tous les placages.

La densité locale, bien qu’ayant été considérée comme étant d’ordre 2 dans la prédiction des performances mécaniques dans le contexte de ce projet (les deux essences ciblées sont parmi les plus homogènes) face à l’orientation des fibres, reste néanmoins un paramètre essentiel à considérer en particulier dans la perspective de créer des produits mixtes. Le LaBoMaP a mené récemment des travaux montrant que la technic laser pouvait permettre de donner une indication sur la densité mais de manière indirecte (8). Une méthode encore plus récente et

Figure 1 : Local Online Orientation fiBer AnalyseR, scan de placages de résineux (Douglas)
prometteuse, utilisant des ondes TeraHertz pour réaliser des densitométries n'a encore jamais été considérée par les industriels de la filière bois et leurs fournisseurs de moyens de contrôle en ligne du déroulage. Cette méthode a notamment l’avantage de ne pas utiliser de rayon ionisant (avec de forts risques sanitaires) alors que les moyens actuels mettent en œuvre des faisceaux ionisants (i.e. RX) et ce à des fréquences compatibles avec les cadences industrielles pour les faibles épaisseurs des placages déroulés.

Figure 3 : Scanner de densité TeraHertz appliquée au bois (TeraSense Corp.).

D’autre part, les différences inhérentes à l’orthotropie (considérée comme radiale à l’échelle macroscopique) naturelle du matériau sont telles que la plupart des auteurs déduisent des valeurs des propriétés longitudinales les propriétés dans les autres directions matérielles sans que cela ne nuise à la qualité de la modélisation vis-à-vis des essais réels (souvent sur des poutres massives ou multi-plis en flexion). Ces simplifications, usuelles dans le bois, pourront être considérées afin d’éventuellement réduire le nombre de propriétés à mesurer mais ne seront appliquées qu’après une analyse de sensibilité. Une liste d’essais de caractérisation classiques mais non exhaustive, respectant les normes (si elles existent), peut être avancée et décrite dans les grandes lignes :

- Des essais de traction
- Des essais de cisaillement roulant
- Des essais de flexion 4 points
- Des essais de cisaillement

Tous ces essais seront suivis par corrélation d’images numériques CIN-2D et/ou CIN 3D pour validation des modes d’endommagement inter- et intra-plis dans le multi-pli (contreplaqué) en flexion et potentiellement compression. D’une manière générale, l’introduction de la dispersion dans les modèles avancés composites est peu étudiée. Seul le calcul virtuel des valeurs A et B représentant la dispersion des caractéristiques mécaniques en aéronautique a été analysée récemment via des modèles analytiques (9). Il est à noter que la modélisation « Discret Ply Model » (DPM) permet une prise en compte des défauts de réalisation des composites par son caractère discret. Une autre équipe de l’Institut Clément Ader engagée dans le projet BOOST a développé une expertise dans la mise en œuvre de cette technique de modélisation. Aussi, une autre thèse déjà débutée a pour but d’intégrer les spécificités du matériau bois à ce modèle optimisé pour les composites classiques (non biosourcés). Une troisième thèse est, quand a elle, en charge de la partie validation des structures optimisées (données matériaux locales et modèle DPM) pour les applications structurelles de transports notamment par la réalisation d’essais normatifs et d’une crash-box.
Remerciements

Cette thèse de doctorat est financée dans le cadre du projet ANR-21-CE43-0008-02. Les auteurs remercient également la plate-forme technique Xylomat du réseau scientifique Xylomat financée par l’ANR-10-EQPX-16 XYLOFOREST qui largement été utilisée pour réaliser cette étude.

Références

(4) Tropix Peuplier et Hêtre. Base de données de caractéristiques technologiques de 245 essences forestières tropicales et tempérées, 2015, Cirad Eds. doi:10.18167/74726F706978

Étude de la migration d’humidité en condition non-isotherme dans le bois massif par tomographie à rayons X

MARTIN Benoît1,2, COLIN Julien2,3, LU Pin2, CASALINHO Joel3, PERRÉ Patrick2,3 et RÉMOND Romain1

1LERMaB, ENSTIB, Université de Lorraine, Épinal, France
2Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
3Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Gif-sur-Yvette, France
b.martin@univ-lorraine.fr

Mots clefs : épicéa ; transferts couplés ; sollicitation thermique ; migration hydrique ; tomographie

Introduction
Pour garantir la pérennité des bâtiments en bois, ainsi qu’une qualité d’air intérieur saine, il est nécessaire d’assurer un bon comportement hygrothermique des parois extérieures (Johansson, Bok, et Ekstrand-Tobin 2013; Tietze et al. 2017). En effet, les échanges hydriques peuvent avoir un impact non négligeable sur les déperditions thermiques globales et doivent, en conséquence, être intégrés dans les modèles numériques (Duforestel 2014; Moon, Ryu, et Kim 2014; Perré 2019). Cependant, des études ont montré que des écarts demeurent entre mesures expérimentales et simulations hygrothermiques (Woloszyn et al. 2014; McClung et al. 2014). Or, la caractérisation des propriétés hydriques des matériaux est généralement réalisée en conditions isothermes, qui se trouvent relativement éloignées des conditions d’usages des matériaux.

Pour mieux comprendre les transferts au sein des parois, il est nécessaire de descendre à l’échelle matériau. En s’appuyant sur l’imagerie à rayons X, ce travail s’intéresse à la migration d’humidité dans le bois massif soumis à des conditions non isothermes.

Matériels et méthodes
Préparation de l’échantillon
Un échantillon cylindrique (Ø 20 mm) d’épicéa commun (Picea abies) a été usiné avec une machine CNC 5 axes suivant la direction radiale. Une phase de conditionnement préalable a été effectuée pour amener l’échantillon à une teneur en eau homogène de 17.5 %. L’étude de la migration d’humidité au sein de l’échantillon soumis à des conditions limites thermiques non uniformes nécessite de maintenir une teneur en eau moyenne constante. Pour ce faire, la surface latérale de l’échantillon a été recouverte d’une double couche de revêtement imperméable (Rubson, Liquid Rubber Plus). Ensuite, une gaine thermo-retractable souple a été ajoutée pour parfaire l’étanchéité en périphérie. Un multicouche a été appliqué sur les deux sections parallèles comprenant une couche de revêtement Rubson, une feuille aluminium et de nouveau une couche de revêtement Rubson.
Contrôle des conditions limites

La sollicitation thermique consiste en une différence de température de 20 °C (15 et 35 °C de part et d’autre de l’échantillon), maintenue constante pour reproduire une configuration hivernale de manière simplifiée. Un dispositif expérimental innovant a été conçu pour contrôler les conditions aux limites de l’échantillon tout en étant compatible avec la tomographie à rayons X (permettre une rotation complète de l’échantillon sans vibration, limiter l’absorption des rayons X par le dispositif et manuportable pour libérer l’utilisation du tomographe à rayons X).

Acquisition et traitement d’images

L’acquisition des projections 2D a été réalisée avec un tomographe de dernière génération de la société RX Solutions (EasyTom XL Ultra 150-160). La reconstruction tomographique, de chacune des acquisitions, a ensuite été effectuée à partir des projections acquises, via le logiciel X-Act (RX Solutions). Le résultat obtenu est une série de coupes transversales générées perpendiculairement à l’axe du cylindre avec une taille de pixel de 40,017 µm. Ces dernières ont été analysé avec le logiciel FIJIimageJ.

Détermination de la teneur en eau locale

L’échantillon est discrétisé en régions d’intérêt (ROI), en isolant le bois initial, de transition et final de chaque cerne. D’après (Freyburger et al. 2009), pour chacune de ces ROI, la valeur de niveau de gris (CT number) peut être reliée à la teneur en eau du bois (X) via une droite (Éq. 1) dont les paramètres sont obtenus par calibration :

\[
CT \text{ number}_{ROI} = 0.55 \cdot \rho_0 \cdot (X + 1) + 2.8372 \cdot 10^4
\]

avec \(\rho_0\) la masse volumique anhydre du bois

Résultats et discussion

L’écart de température de 20 °C imposé de part et d’autre de l’échantillon entraîne une migration humidité de la zone chaude vers la zone froide sous l’effet du gradient de pression partielle de vapeur d’eau (Bouali et al. 2012) (Fig. 1). Le champ de teneur en eau observé présente de fortes variations locales le long de l’échantillon. Ces variations sont liées à la densité hétérogène de l’épicéa au sein des cernes. Du côté de la zone froide (T1 = 15°C), la teneur en eau augmente au-delà du point de saturation des fibres (X≈30 % b.s, (Siau 1984)), ce qui suggère la présence d’eau libre. L’analyse des coupes tomographiques confirme la présence d’eau libre au cours de l’expérimentation avec l’apparition de taches noires à proximité de la plaque froide (Fig. 2). L’accès au volume 3D permet également d’accéder aux variations dimensionnelles avec un diamètre de l’échantillon – suivant la direction tangentielle – qui augmente à proximité de la plaque froide et diminue à l’opposé de l’échantillon. Deux lignes verticales en pointillées ont été ajoutées sur les côtés des coupes pour faciliter l’évaluation du gonflement de l’échantillon au cours du temps Ces changements dimensionnels sont liés aux modifications de l’état hydrique local du bois avec une variation de la quantité d’eau liée entre ces deux zones. Ces deux observations sont en cohérences avec l’évolution temporelle de la distribution de teneur en eau représentée en figure 1.
Fig. 1 : Évolution temporelle de la teneur en eau en fonction de la hauteur dans l’échantillon avec le profil de densité ahydre correspondant placé au dessus.

Fig. 2 : Coupes tomographiques localisées au centre de l’échantillon suivant le plan R-T. Le niveau de gris foncé équivaut à la présente de matière plus dense que le niveau de gris clair.

Conclusion et perspectives
Dans ce travail, la tomographie à rayons X a permis des analyses qualitative et quantitative de la migration d’humidité dans le bois sous l’effet d’une différence de température aux bornes de l’échantillon.
L’analyse de la distribution de l’eau libre pourra être approfondie en considérant la structure anatomique du bois d’épicéa. Par ailleurs, il conviendra d’étendre la gamme de conditions aux limites, notamment en appliquant des consignes variables dans le temps, pour approcher le comportement dynamique observé en inter-saison ou en été. L’ensemble de ces résultats expérimentaux pourront être confrontés avec ceux obtenus par simulation numérique.
Remerciements

L’ADEME est partenaire du projet et co-finance une bourse de thèse dans le cadre de la thématique « villes et territoires durables », contribution au développement de bâtiments performants intégrant des matériaux biosourcés.

Cette étude a été réalisée au sein du Centre Européen de Biotechnologie et de Bioéconomie (CEBB), soutenu par la Région Grand Est, le Département de la Marne, le Grand Reims, et l'Union européenne. Les auteurs remercient en particulier le Département de la Marne, le Grand Reims, la Région Grand Est et l'Union européenne, ainsi que le Fonds européen de développement régional (FEDER Champagne-Ardenne 2014-2020), pour leur soutien financier à la Chaire de Biotechnologie de CentraleSupélec.

Pour quatre ans (du 01/05/2016 au 31/07/2020) et avec un budget total de 965 000 €, 3D-BioMat a été cofinancé par le Grand Reims (31%) et l'Union européenne (48,7%-soit 50% des dépenses éligibles). L'Europe s'engage auprès du Grand Est avec le Fonds Européen de Développement Régional.

Références

Duforestel, Thierry. 2014. « Des transferts couplés de masse et de chaleur à la conception bioclimatique: recherches sur l’efficacité énergétique des bâtiments. » Mémoire HDR.

Solutions de revêtements bio-sourcés chaux-CHANVRE et terre-CHANVRE pour l’éco-rénovation des bâtiments anciens

Dalel MEDJELEKH 1,2, Stéphane Ginestet 1, Gilles ESCADEILLAS 1

1 Université de Toulouse, Institut National des Sciences Appliquées «INSA/UPS», Laboratoire des Matériaux et Durabilité des Constructions «LMDC», 135, Avenue de Rangueil - 31077 Toulouse Cedex 4 – France
2 Université Badji Mokhtar, Département d’architecture Annaba, Algérie
dalel.medjelekh@yahoo.fr

Mots clés : Eco-rénovation, caractérisation thermo hydrique, bâtiments anciens, revêtements bio-sourcés, chaux-CHANVRE, terre-CHANVRE.

Introduction

Matériel et méthode
Une approche multicritère de sélection des solutions en phases d’aide à la décision et de mise en œuvre a été retenue pour l’éco-rénovation de deux bâtiments dit « démonstrateurs », choisis dans le centre historique de Cahors (Fig.1).
Une méthodologie de « living lab » a tout d’abord été adoptée permettant de faire participer plusieurs acteurs. En plus des six partenaires permanents du projet, des représentants d’utilisateurs finaux, d’autorités locales, d’architectes et de producteurs de matériaux se sont réunis avec les chercheurs et les étudiants. Ensuite, au niveau des ateliers de co-création avec des artisans locaux, les pré-solutions et applications possibles ont été discutées (Fig.2).

En parallèle, cinq phases de mise en œuvre ont été suivies (Fig 3) in situ et en laboratoire. Initialement, les deux bâtiments démonstrateurs ont été diagnostiqués au regard du type et de l’état physique de la structure de l’enveloppe. Ils ont ensuite été pré-rénovés et préparés à la rénovation. En phase monitoring, une analyse expérimentale de caractérisation thermo-hydrique a été menée sur les matériaux de l’enveloppe initiale. Enfin en dernière phase, les matériaux de solution d’éco-rénovation trouvés sont testés pour être validés (Fig 4).
Monitoring

Des échantillons de matériaux de l’enveloppe initiale ainsi que des matériaux de solution ont suivi une caractérisation thermo hydrique. Les mesures de la conductivité thermique, de l’effusivité thermique, de la capacité thermique et des isothermes de sorption ont été réalisées.

![Fig. 4: Matériaux de l’enveloppe initiale caractérisés : briques et pierres (à gauche) Matériaux de solution testés : terre peu fibrée et très fibrée, chaux-chanvre peu fibré et très fibré (à droite)](image)

Résultats et discussion

La caractérisation thermique des matériaux de l’enveloppe initiale dévoile que la conductivité (Fig 5) et l’effusivité thermique diminuent avec l'âge des briques [2]. Les solutions d'isolation thermique proposées doivent être adéquates à la fois au confort thermique d’été et celui d’hiver des bâtiments anciens. Pour profiter de l’inertie thermique des murs épais, bénéfique en été et inconfortable en hiver, la solution de « correction thermique » à base de revêtements est le compromis idéal. Une couche de 4 à 6 cm de revêtement intérieur permet cette correction thermique et préserve la valeur historique et l’aspect extérieur du bâtiment ancien [3].

Au regard de la caractérisation hydrique des matériaux de l’enveloppe (Fig 6), les briques testées peuvent être classées non pas « très hygroscopiques », mais « transpirants ». Ces matériaux anciens absorbent et restituent la vapeur d'eau résultant de l'utilisation du lieu. De ce fait, la solution d'éco-rénovation à proposer (telle que la correction thermique à base de revêtements intérieurs) doit, de préférence, être hygroscopique ou à base de bois (enduits chaux-chanvre, terre-chanvre) pour permettre l'évacuation de l'humidité du mur et éviter toute condensation interne.
Validation des solutions

Pour les propriétés thermiques des revêtements sélectionnés, « terre-chanvre » et « chaux-chanvre », la conductivité thermique (Fig. 7) est plus faible avec un fort taux de fibres ; alors que la capacité thermique massique est plus importante avec la chaux et diminue avec l'augmentation du taux de fibres. Parmi l'ensemble des essais réalisés [4], l'enduit chaux-chanvre très fibré est le plus isolant avec une bonne inertie et une excellente régulation hydrique.

Pour les propriétés hydriques, les solutions « terre-chanvre » et « chaux-chanvre » donnent des isothermes (Fig. 8) du type II ou III selon la classification de l'IUPAC. Plus les matériaux contiennent des fibres végétales, plus ils sont capables d’adsorber l’humidité et de la contenir.

En perspective, les solutions prises testées avant rénovation seront suivies pendant et après rénovation pour être validées. Ces solutions devront également être approuvées en termes de coûts et d’aspects sociétaux (acceptabilité) dans le but d’une meilleure éco-rénovation et de la préservation du patrimoine architectural des centres historiques, notamment à fortes valeurs patrimoniales.
Remerciements

Références

Extraction et fractionnement d’hémicelluloses d’Aucoumea Klaineana Pierre par explosion à la vapeur et procédés membranaires

MOUGNALA MOUKAGNI Errol1, SAFOU TCHIAMA Rodrigue2, ZIEGLER-DEVIN Isabelle1, AYMES Arnaud1, KAPEL Romain3, BROSSE Nicolas1

1Université de Lorraine, INRAE, LERMAB, F-54000, Nancy, France
2Laboratoire de Recherche et de Valorisation du Matériau Bois (LaReVa Bois), Ecole Normale Supérieure d’Enseignement Technique (ENSET), BP 3989, Libreville, Gabon
3Université de Lorraine, Laboratoire Réactions et Génie des Procédés, CNRS UMR 7274 (LRGP)
errol.mougnala-moukagni@univ-lorraine.fr

Mots clefs : Aucoumea Klaineana Pierre ; Explosion à la vapeur ; Hemicelluloses ; Séparation membranaire

Contexte et Objectifs
La biomasse végétale se présente aujourd’hui comme l’alternative la plus rassurante aux ressources fossiles. Cependant l’intégration de cette biomasse dans le circuit de bioraffineries nécessite l’utilisation des procédés de prétreatment écologiques capables de séparer ses différents composés constitutifs. Par ailleurs, l’Okoumé est une essence tropicale à croissance rapide connue dans l’industrie du panneau et pour son aptitude remarquable au déroulage. Depuis plusieurs années, l’industrie du bois Gabonais génère de grandes quantités de coproduits faiblement valorisés. Ces dernières années, plusieurs études se sont concentrées sur la valorisation des co-produits de la transformation industrielle du bois d’Okoumé à la recherche d’utilisations alternatives. Pour cette raison, plusieurs composés d’intérêt ont été analysés, principalement la cellulose, la lignine et les extractibles. Les hémicelluloses quant à elles restent peu connues (Safou-Tchiama 2005 ; Engozogho Anris et al., 2019 ; Obame et al., 2019 ; Mougnala Moukagni et al., 2021). Dans cette étude, nous nous intéressons à la séparation membranaire des saccharides obtenus par explosion à la vapeur du bois d’Okoumé.

Matériel et Méthodes
La biomasse imprégnée à l’eau a été introduite directement dans un réacteur pressurisé à une température de 170 °C pendant un temps de séjour de 10 minutes. La biomasse saturée en vapeur a été libérée par une dépression soudaine. Après prétreatment, l'hydrolysat a été récupéré par filtration sous vide avec un papier filter. Un système à flux tangentiel Cogentmscale (Millipore, Molsheim, France) a été utilisé pour réaliser les expériences de diafiltration. La membrane de 10 kDa a été sélectionnée pour une diafiltration d'hydrolysat explosé. La diafiltration de type dilution séquentielle a été réalisée jusqu’à 6 volumes de diafiltration (DV). La séparation des hémicelluloses par précipitation à l’éthanol a été effectuée à des fins de comparaison. Les fractions obtenues ont été analysées par HPLC-SEC, HSQC-NMR, FTIR, UV-visible et HPAE-PAD.

Résultats
Les résultats montrent que les hémicelluloses obtenues dans le rétentat après diafiltration et celles récupérées par précipitation à l’éthanol sont constituées d’un mélange de glucuronoxylanes (GX) et de glucomannanes (GM), alors que le perméat de la diafiltration est essentiellement formé d'arabinoxylanes (AX) (Tab 1). Le suivi d’exclusion stérique montre
qu’à mesure que le nombre de diavolume augmente, l’intensité des pics des composés de grand poids moléculaire augmente, tandis que les pics des composés de faible poids moléculaire diminuent. La diafiltration a favorisé l’agrégation des saccharides, et donc une forte augmentation du poids moléculaire des polymères dans le rétentat (Fig 1). De même que la précipitation à l’éthanol, le rétentat a permis de conserver les hémicelluloses acétylées O2 et/ou O3, préservant les fragments acétylés dans une plus grande mesure par rapport au perméat (Tab 1 et Fig. 2). Les extraits du perméat contenaient une forte teneur en lignine résiduelle, témoignant une bonne purification des hémicelluloses du rétentat.

Tab 1. Composition en sucre (% du poids sec) de la solution initiale, du rétentat final, du perméat global et du précipité.

<table>
<thead>
<tr>
<th></th>
<th>Solution initiale</th>
<th>Perméat global</th>
<th>Rétentat Final</th>
<th>Précipité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fucose</td>
<td>0.7 (0.0)</td>
<td>0.6 (0.0)</td>
<td>0.1 (0.0)</td>
<td>-</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>4.0 (0.1)</td>
<td>2.0 (0.0)</td>
<td>2.4 (0.0)</td>
<td>4.6 (0.1)</td>
</tr>
<tr>
<td>Arabinose</td>
<td>15.0 (0.1)</td>
<td>13.1 (0.3)</td>
<td>1.2 (0.0)</td>
<td>0.5 (0.0)</td>
</tr>
<tr>
<td>Galactose</td>
<td>9.8 (0.1)</td>
<td>5.7 (0.1)</td>
<td>5.4 (0.1)</td>
<td>5.4 (0.2)</td>
</tr>
<tr>
<td>Glucose</td>
<td>14.9 (0.1)</td>
<td>4.7 (0.2)</td>
<td>12.5 (0.2)</td>
<td>9.3 (0.3)</td>
</tr>
<tr>
<td>Xylose</td>
<td>30.9 (0.2)</td>
<td>12.5 (1.0)</td>
<td>23.6 (0.2)</td>
<td>47.7 (1.7)</td>
</tr>
<tr>
<td>Mannose</td>
<td>7.2 (0.3)</td>
<td>3.7 (0.3)</td>
<td>4.02 (0.0)</td>
<td>11.3 (0.8)</td>
</tr>
<tr>
<td>Acide Galacturonique</td>
<td>4.7 (0.1)</td>
<td>1.9 (0.1)</td>
<td>3.5 (0.0)</td>
<td>5.4 (0.2)</td>
</tr>
<tr>
<td>Acide Glucuronique</td>
<td>0.4 (0.0)</td>
<td>0.2 (0.0)</td>
<td>0.3 (0.0)</td>
<td>9.3 (0.2)</td>
</tr>
<tr>
<td>Sucre totaux</td>
<td>87.4 (0.4)</td>
<td>44.5 (2.1)</td>
<td>53.0 (0.1)</td>
<td>93.5 (3.5)</td>
</tr>
<tr>
<td>Acide acétique</td>
<td>-</td>
<td>4.5</td>
<td>8.7</td>
<td>8.4</td>
</tr>
<tr>
<td>LSA</td>
<td>10.9 (4.5)</td>
<td>32.2 (0.2)</td>
<td>4.4 (0.3)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>98.3</td>
<td>81.2</td>
<td>66.1</td>
<td>101.9</td>
</tr>
</tbody>
</table>

172/292
Conclusion et perspectives
Les résultats obtenus révèlent une séparation efficace des hémicelluloses polymériques par un procédé membranaire après un prétraitement par explosion à la vapeur. Les fragments hémicellulosiques obtenus dans le rétente présentaient un poids moléculaire moyen beaucoup plus élevé que ceux de la solution initiale. En outre, la séparation membranaire a produit des hémicelluloses fortement acétylées. Cette étude pourrait contribuer à une meilleure valorisation des déchets d’Okoumé pour la production de matériaux à base d’hémicelluloses.

Remerciements
Nos remerciements vont à l’endroit de l’Agence Nationale des Bourses du Gabon (ANBG), de l’Université de Lorraine et du LERMAB pour leur soutien financier et matériel.

Références
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Essais de flexion 4 points pour déterminer les résistances et rigidités en flexion et à l’effort tranchant de panneaux en bois lamellés croisés (CLT)

NARCY Alma1,2, PHAM Duc Toan1, FORET Gilles2, LEBEE Arthur2

1 Centre Scientifique et Technique du Bâtiment (CSTB), 84 avenue Jean Jaurès, Champs-sur-Marne, 77447 Marne-la-Vallée Cedex 2, France
alma.narcy@cstb.fr ; ductoan.pham@cstb.fr
2 Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, Université Gustave Eiffel, CNRS, Champs-sur-Marne, France
gilles.foret@enpc.fr ; arthur.lebee@enpc.fr

Mots clefs : Bois lamellé croisé (CLT), Flexion 4 points, Rigidité, Résistance, Flexion, Cisaillement

Contexte et objectifs
L’utilisation des panneaux en bois lamellé croisé, ou Cross Laminated Timber (CLT), s’est aujourd’hui généralisée dans la construction des bâtiments de grande hauteur (Brandner et al., 2016). Le CLT est utilisé sous forme de panneaux, pouvant avoir la fonction de planchers, de murs porteurs et de façades.

Néanmoins, la forte hétérogénéité et anisotropie de ces éléments de structure rend leur dimensionnement délicat. Les projets actuels de tours en CLT posent la question du comportement des CLT sous des charges importantes. Le flambement (ou voilement) est un potentiel risque pour les panneaux porteurs.

Par ailleurs, en se basant sur la méthode classique d’Ayrton et Perry (1886), la prise en compte des imperfections géométriques dans le calcul de la résistance de murs en CLT a révélé l’existence d’un nouveau mode de ruine par excès d’effort tranchant lorsque l’instabilité se produit (Perret et al., 2020). Ce mode de ruine inattendu et pouvant être dimensionnant a été identifié par une approche théorique et doit être confirmé par des essais de validation. La première étape de cette validation consiste à déterminer les rigidités et résistances des panneaux utilisés ensuite pour les essais de flambement. Pour déterminer ces grandeurs, des essais de flexion 4 points ont été menés. La méthode détaillée par Perret et al. (2018) est adoptée. Elle consiste notamment à déterminer les rigidités à l’effort tranchant en mesurant les rotations aux appuis.

Matériel et méthode

Panneaux testés
Au total, 6 panneaux de CLT ont été testés en flexion 4 points. Il s’agit de CLT – 5 plis, chaque pli ayant une épaisseur e de 20mm. Les panneaux ont une longueur totale de 2900mm, une largeur b de 500mm et une hauteur h de 100mm. L’essence composant les panneaux est l’épicéa, de la classe C24. Ils ont été conservés 4 mois en chambre climatique à 20°C et 65% d’humidité relative. Les panneaux sont donc testés pour la classe de service 1.

Méthode
Pour obtenir les rigidités et résistances des panneaux en flexion et à l’effort tranchant, des essais de flexion 4 points ont été réalisés (Fig.1). Le panneau est en appui simple en C et E, avec une portée l de 2300mm, et l’effort P est appliqué aux points C’ et E’, séparés de l’entre-
axe \((l_0)\) qui détermine le mode de ruine attendu. Si les efforts sont appliqués dans la zone jaune, la rupture sera causée par un excès de flexion, dans la zone bleue, elle sera causée par un excès de cisaillement. Deux entre-axes sont ainsi choisis, pour avoir 3 essais avec une rupture en flexion, et 3 en cisaillement. Les deux valeurs retenues sont \(l_0 = 700\) mm pour la flexion, et \(l_0 = 1700\) mm pour le cisaillement.

Les rotations \(\varphi\) aux appuis C et E mesurées par deux LVDT à chaque appui, et les déformations de section \(\varepsilon\) mesurées par deux jauges (sur les faces inférieure et supérieure, au centre du panneau) permettent de faire une estimation de la rigidité en flexion \(D\) (équations (1) et (2)). La flèche centrale du panneau \(f_{\text{B}/0}\) mesurée par deux LVDT (en B et 0), corrigée en ôtant le tassement aux appuis, permet d’estimer la rigidité à l’effort tranchant \(F\) (équation (3)) (Perret et al., 2018).

\[
\frac{1}{F} = \frac{4f_{\text{B}/0}}{P (l - l_0)} - \frac{1}{8D} \left(2 - \frac{l}{l_0} - \frac{1}{3} (l - l_0)^2\right) \tag{3}
\]

L’expression de la résistance en flexion \((\sigma_{xx,\text{max}})\) pour une section hétérogène et la résistance à l’effort tranchant \((\sigma_{xz,\text{max}})\) obtenues à partir des hypothèses de Jouravski (1856) sont présentées dans le système d’équation 4. Le module d’élasticité transversal \(E_C\) étant très inférieur au module longitudinal \(E_L\), il est possible de négliger \(E_C / E_L\) pour obtenir les équations du système 5.

\[
\begin{align*}
\sigma_{xx}(z) &= -\frac{M}{D} \\
\sigma_{xz}(z) &= -\frac{P}{2D}
\end{align*}
\]

\[
\left\{ \begin{array}{l}
\sigma_{xx,\text{max}} = \frac{l}{l_0} \\
\sigma_{xz,\text{max}} = \frac{1}{3}
\end{array} \right.
\]

Résultats et discussion

La rigidité des panneaux est calculée pour le domaine élastique. Ce domaine est déterminé par la partie linéaire des courbes Effort – Flèche centrale (Fig. 2). Les valeurs de rigidités sont ensuite déterminées en faisant une régression linéaire des courbes \(P = f(\Delta \varphi)\) à partir de l’équation (1) pour déterminer \(D(\Delta \varphi)\), \(P = f(\Delta \varepsilon)\) à partir de l’équation (2) pour déterminer \(D(\Delta \varepsilon)\), et \(f_{\text{B}/0}\) = \(f(P)\) à partir de l’équation (3) pour déterminer \(F\). La Tab.1 présente les estimations des rigidités. Enfin, les valeurs sont comparées aux résultats de la méthode « Shear Analogy » (Kreuzainger, 1999), notée « SA », et aux résultats des formules pour des panneaux multicouches, détaillées par Perret (2020), notée « \(D\) » et « \(F\) ». Pour ces deux
dernières méthodes, les valeurs utilisées sont celles de l’EN338 (AFNOR, 2016, p. 338) pour un bois de classe C24.

Tab. 1 : Rigidité en flexion et à l’effort tranchant des panneaux

<table>
<thead>
<tr>
<th>Moyen d'obtention</th>
<th>Rigidité en flexion $D \times 10^{11}$ N.m2</th>
<th>Rigidité à l’effort tranchant $F \times 10^6$ N</th>
<th>Part de la flèche en cisaillement $% f$ (en %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rupture en flexion</td>
<td>\bar{D} (Moy.) (\bar{D} (CV %))</td>
<td>\bar{F} (Moy.) (\bar{F} (CV %))</td>
<td>$% f$ (Moy.) ($% f$ (CV %))</td>
</tr>
<tr>
<td>Moy.</td>
<td>4,51 (9,5)</td>
<td>13,9 (83)</td>
<td>8 (62)</td>
</tr>
<tr>
<td>Moy.</td>
<td>4,65 (11,7)</td>
<td>23,9 (137)</td>
<td>10 (77)</td>
</tr>
<tr>
<td>Moy.</td>
<td>3,66</td>
<td>7,44</td>
<td></td>
</tr>
<tr>
<td>Moy.</td>
<td>3,66</td>
<td>7,99</td>
<td></td>
</tr>
<tr>
<td>Moy.</td>
<td>5,49 (8,70)</td>
<td>42,9 (123)</td>
<td>5 (73)</td>
</tr>
<tr>
<td>Moy.</td>
<td>6,19 (6,06)</td>
<td>5,54 (29,60)</td>
<td>16 (32)</td>
</tr>
</tbody>
</table>

Les rigidités en flexion sont cohérentes avec les résultats attendus, en effet elles sont plus élevées que celles calculées avec les valeurs garanties par le constructeur pour du C24 ($D = 3,66 \times 10^{11}$ N.m2), mais restent du même ordre de grandeur. En revanche, pour les rigidités en à l’effort tranchant, les valeurs sont très variables (les coefficients de variation CV% sont très élevés). Cela peut s’expliquer par une très grande sensibilité à la rigidité en flexion calculée précédemment, et également par le fait que la rigidité à l’effort tranchant est déterminée par la flèche en cisaillement. Si elle représente une part importante de la flèche totale, la mesure sera plus précise. Dans le cas présent, elle ne représente que 5 à 16% en moyenne (voir Tab.1). Pour augmenter cette part et donc la précision de la mesure, il faudrait réduire les longueurs l et l_0.

La détermination de la résistance est faite à partir des courbes Effort – Flèche centrale. Pour chaque essai, le panneau fléchit jusqu’à une première rupture (voir Fig. 2), la flèche augmente ensuite pour atteindre l’effort maximal. Les équations (4) et (5) sont valides dans le domaine élastique. Ainsi, la résistance du panneau est ici définie par la limite d’élasticité. Les résultats obtenus sont présentés en Tab. 2.

Tab.2 : Résistance des panneaux

<table>
<thead>
<tr>
<th>Rupture en cisaillement</th>
<th>Résistance en cisaillement restant (MPa)</th>
<th>Moyenne (CV %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLT 6</td>
<td>1,63</td>
<td>1,67 (13,8)</td>
</tr>
<tr>
<td>CLT 19</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>CLT 20</td>
<td>1,91</td>
<td></td>
</tr>
<tr>
<td>Rupture en flexion</td>
<td>Résistance en flexion (MPa)</td>
<td></td>
</tr>
<tr>
<td>CLT 5</td>
<td>46,91</td>
<td></td>
</tr>
<tr>
<td>CLT 7</td>
<td>38,73</td>
<td>40,95 (12,7)</td>
</tr>
<tr>
<td>CLT 9</td>
<td>37,21</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 : Courbe Effort – flèche centrale des essais de flexion 4 points

Les résultats de résistance en flexion sont comparables à ceux obtenus par Jöbstl et Schickhofer (2007) et Buck et al. (2016). En effet, la résistance en flexion de leurs panneaux est de 41,1 MPa pour les premiers, et de 35,2 MPa pour les seconds. Ramenés à des caractéristiques de panneaux similaires, les résistances en flexion de leurs panneaux seraient de 37,4 MPa pour les premiers, et de 37,1 MPa pour les seconds.
Les résistances en cisaillement roulant correspondent également à celles trouvées expérimentalement par Flaig (2015) : 1,59 MPa (COV = 22%), ou Franzoni et al., (2015) : 1,6 MPa (COV = 18 %).

Conclusion et perspectives
Les essais de flexion 4 points menés récemment au CSTB ont permis de déterminer les résistances et les rigidités en flexion et à l’effort tranchant des panneaux qui constituent le matériau testé dans la campagne de flambement menée en parallèle. On notera néanmoins la sensibilité des rigidités à l’effort tranchant, qui pourraient être améliorées en testant les panneaux avec d’autres portées.

L’obtention des valeurs de résistances et de rigidités concluent le travail préliminaire de la campagne d’essai de flambement et apportent des éléments indispensables à la comparaison du modèle de Perret et al. (2018) aux résultats expérimentaux des essais de flambement.

Remerciements

Références
AFNOR (2016). NF EN 338 - Bois de structure - Classes de résistance
Jouravski (1856). Sur la résistance d’un corps prismatic et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur.
Simulation numérique des structures hybrides acier-bois en cas d'incendie

NGUYEN Manh Hung1, SAULNIER Véronique1
OULDBOUKHITINE Salah-Eddine1, DURIF Sébastien1, BOUCHAIR AbdelHamid1

1Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal
Manh_Hung.NGUYEN@etu.uca.fr

Mots clefs : Simulation numérique ; bois ; structure acier ; ISO 834 ; protections passives

1. Introduction

La structure en acier est utilisée de manière courante dans le bâtiment, le génie civil. L’acier est un matériau avec une bonne résistance mécanique et facile à mettre en œuvre sur de grandes portées pour les ouvrages d’art. Cependant, en cas d'incendie, l’acier, lors de son échauffement perd rapidement ses propriétés mécaniques à partir de 200°C pour sa raideur et 400°C pour sa résistance. A partir de 550°C, la limite d’élasticité et le module d’Young diminuent très fortement (EN-1993-1-2, 2005). Dans cette recherche, une solution de protection au feu à l’aide d’éléments en bois est étudiée. Différentes sections et combinaisons de bois et d’acier sont étudiées afin d’évaluer le bénéfice du bois sur l’échauffement de l’acier avec une quantité plus ou moins importante de bois. Ce travail de recherche a pour but d’évaluer le comportement thermique des structures métalliques ou hybrides acier-bois. Un modèle thermique a été proposé pour simuler le transfert de chaleur dans le bois et l'acier par un programme d'éléments finis en deux dimensions (2D) sur le logiciel Abaqus (Dassault systemes, 2013). La validation est basée sur la comparaison entre les résultats numériques et expérimentaux avec notamment les températures mesurées et l’évaluation de la vitesse de carbonisation du bois.

2. Étude aux éléments finis

2.1. Configurations étudiées

Les essais ont été menés avec différents types de bois comme : douglas, pin, sapin et lamellé-collé. Les échantillons ont été exposées au feu sur 3 ou 4 faces. Les poutres en acier sont des poutres en T 230 ou des IPE 200, IPE 240 et IPE 140 protégées partiellement et totalement encapsulées par le bois (Figure 1).

Fig. 1 : Configurations testées utilisant le bois comme protection passive
2.2. Modèle élément finis

Des éléments de type DC2D4 - quadrilatère de transfert de chaleur linéaire à 4 nœuds, sont utilisés dans ces simulations et disponibles dans la bibliothèque ABAQUS. Le temps d'exposition au feu normalisé a été appliqué à \(t = 120 \) minutes pour les simulations 2D. La température ambiante des nœuds du modèle a été initialement réglée à \(20 \degree C \), et d'autres paramètres clés tels que la constante de Stefan-Boltzmann ont été spécifiés pour l'analyse. Le feu normalisé (ISO-834, 1999) a été utilisé pour aider à la reproductibilité des résultats obtenus. La courbe du feu a été calculée pour la durée de simulation requise et stockée sous forme de jeu de données d'amplitude de température dans le logiciel.

Cette amplitude a ensuite été appliquée à chaque surface exposée au feu des éléments modélisés. Les conditions de film de surface, qui sont décrites comme suit :

- Le feu normalisé a été appliqué à la surface exposée sous forme de chaleur radiative avec un coefficient d'émissivité de 0,8.
- Le feu normalisé a également été appliqué à la surface exposée sous forme de chaleur convective avec un coefficient de convection de 25 W/m²K.
- L'environnement en plein air a été modélisé comme une surface convective libre avec un coefficient convectif supposé de 9 W/m²K, pour modéliser les pertes radiatives et convectives et le flux de chaleur dû au rayonnement peut être négligé.

3. Validation

Les résultats de la comparaison entre le modèle et l'expérience a été étudié qui confirment que le modèle a été validé sur la base d'essais. La figure 2 montre une comparaison de la température de la poutre IPE 200 entre les simulations numériques et les résultats expérimentaux. Les températures calculées sur le profil métallique le plus proche des températures mesurées sont obtenues avec la température maximale du four.

Fig. 2 : (a) Distribution de la température dans la section transversale, T (K) ; (b) Comparaison des températures simulées aux températures mesurées sur l’acier pendant 60 minutes
La température du feu modélisé correspond à celle mesurée expérimentalement dans le four. Les températures calculées et mesurées sont quasiment identiques (Fig. 2). Ce modèle peut ensuite servir de base pour comparer chacune de ces configurations à une seule poutre en acier en les soumettant aux mêmes conditions d’échauffement, au même profil IPE 240 et la densité du bois est de 550kg/m3 avec une teneur d’humidité de 12%.

Les essais expérimentaux ont été réalisés sur différentes configurations de poutres protégées par du bois. Cette variation de configuration se traduit aussi par des profils différents (IPE 140, IPE 200 et IPE 240), une quantité de bois différente et donc des températures de four différentes. Ces variations de température du four étaient voulues car elles permettaient de prendre en compte l’impact de la quantité de bois sur la sévérité des températures du four. En corollaire, les seules observations expérimentales ne permettent pas de tirer de conclusions définitives sur les performances des différentes solutions bois de protection incendie. D’où l’intérêt d’un modèle MEF basé sur tous ces tests pour permettre de réaliser cette étude comparative en considérant le même profil et la même température de four pour chaque configuration (Fig. 3).

Fig. 3 : Comparaison de température sur l’âme d’une poutre en acier IPE 240 dans les mêmes conditions aux limites sur quatre configurations différentes

Fig. 4 : Distribution de la température dans la section transversale, T (K)
La figure 4 et 5 montrent la distribution des températures en parallèle isotherme à 300 °C, permet de représenter le front de carbonisation. Ainsi, le bois est intégralement brûlé à 120 minutes d'exposition au feu. La valeur de la vitesse de combustion moyenne du bois estimée numériquement est de 0,7 mm/min sur cette simulation, elle est similaire à la vitesse de combustion standard proposée par l'Eurocode 5.

4. Conclusion
Le bois a bien un effet retardateur sur l'échauffement de la poutre en acier. Les résultats expérimentaux sont indispensables pour confirmer les modèles de simulations numériques menées en parallèle sur le logiciel ABAQUS. Dans cette recherche, des essais au feu ont été effectués conformément à la norme EN 1363-1 (NF-EN-1363-1, 2013) et un modèle thermique 2D a été appliqué à partir d'un modèle basé sur l'Eurocode 5 (Eurocode 5, 2011) pour comparer avec les résultats expérimentaux obtenus et trouver des solutions pour surmonter les lacunes de l'expérience de mise en œuvre. Les résultats de la recherche devraient être appliqués au développement d'expériences thermomécaniques dans un nouveau four, qui peut être construit dans d'autres études et en même temps développer un modèle thermomécanique 3D. La recherche thermomécanique pourrait être appliquée aux immeubles de grande hauteur ; par conséquent, une exigence de sécurité plus élevée pour une résistance au feu plus longue sera assurée en augmentant l'épaisseur du bois de protection extérieur.

5. Remerciements
Je tiens à remercier vivement les techniciens de l'IUT Clermont Auvergne pour l'aide apporté lors de la mise en œuvre des essais. Et aussi grand merci à l'Institut MECD (Matériaux et Equipements pour la Construction Durable) - fournisseur des matériaux pour les essais.

Références
Influence du tempérament écologique sur les propriétés technologiques du bois d’essences peu connues d’origine gabonaise

NKENE MEZUI Estelle1,2,3, BRANCHERIAU Loic1, MOUTOU PITTI Rostand2, IKOGOU Samuel4

1Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité de Recherche (BioWooEB), 34398 Montpellier, France
2Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France
3Ecole Nationale des Eaux et Forêts (ENEF), LaReVaBois, 3960 Libreville, Gabon
4Ecole Polytechnique de Masuku (EPM-USTM), 901 Franceville, Gabon

Mots clés : Essences peu connues ; Stratégies de croissance ; Tempérament écologique ; Propriétés technologiques ; Caractérisation ; Valorisation

Contexte et objectifs
Malgré une exploitation soutenue ces dernières décennies, la forêt gabonaise couvre encore à ce jour, près de 80% du territoire gabonais (Ikogou et al 2016) et regorge de plus de 600 essences dont certaines gagneraient à être étudiées aussi bien du point de vue chimique, anatomique que physico-mécanique. La gestion durable de ce patrimoine national générateur de richesse, passe par des politiques publiques orientées vers la connaissance de la durabilité de ces essences cumulée à la diminution des coûts de construction au profit des populations locales. Grâce à l’instauration d’une politique dite « Emergente », qui vise à diversifier l’économie et à valoriser les ressources locales, le Gabon a fait le choix d’une politique environnementale responsable, courageuse et pragmatique. Cela a conduit, par exemple, à l’interdiction de l’exportation des grumes en janvier 2010 et ouvert la voie à la transformation locale et à la popularisation de ces essences tropicales pour les constructions régionales tout en générant des emplois massifs (plus de 10000 emplois créés grâce à la zone économique spéciale de Nkok). Malheureusement un grand nombre d’essences dites «secondaires» restent aujourd’hui négligées à cause d’un manque accru d’information scientifique sur leur comportement, comparativement aux essences «primaires» qui font l’objet d’une exploitation intense, causant un déséquilibre écologique notable. De plus, la rareté de travaux sur les feuillus tropicaux en ce qui concerne les stratégies de développement de l’arbre (Zimmermann and Brown 1971) ne permet pas de comprendre réellement les mécanismes qui s’opèrent dans un arbre depuis son jeune âge jusqu’à l’âge adulte, mécanismes pourtant nécessaires dans la caractérisation d’une espèce. L’objectif de notre étude est donc de caractériser quelques essences peu connues d’origine gabonaise en analysant leurs stratégies de croissance selon leurs différents tempéraments écologiques en lien avec les propriétés technologiques. L’objectif à terme étant le maintien de l’équilibre écologique et la valorisation de ces nouvelles espèces, pour une exploitation durable et responsable.

Matériel et méthodes

Matériel et protocole de récolte des échantillons
Le matériel végétal retenu pour l’étude se compose de 4 essences tropicales peu connues dites «secondaires» (Tab. 1 ci-dessous) appartenant au groupe «S» (Ministre de l’Économie

Tab. 1 : Caractéristiques géométriques et traits écologiques des essences sélectionnées.

<table>
<thead>
<tr>
<th>ESSENCES PEU CONNUES</th>
<th>Noms scientifiques</th>
<th>Groupes</th>
<th>Diamètre moyen (cm)</th>
<th>Hauteur moyenne (m)</th>
<th>Tempéraments écologiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBO</td>
<td>Santiria trimera</td>
<td>S</td>
<td>25,1</td>
<td>9,6</td>
<td>Sciaphile</td>
</tr>
<tr>
<td>EVINO</td>
<td>Vitex ciliata</td>
<td>S</td>
<td>56,46</td>
<td>16,8</td>
<td>Semi-héliophile</td>
</tr>
<tr>
<td>OZOUGA</td>
<td>Sacoglottis gabonensis</td>
<td>S</td>
<td>67,85</td>
<td>16,6</td>
<td>Semi-héliophile</td>
</tr>
<tr>
<td>PARASSOLIER</td>
<td>Musanga cecropioides</td>
<td>S</td>
<td>46,88</td>
<td>13,2</td>
<td>Héliophile</td>
</tr>
</tbody>
</table>

Protocole d’usinage et préparation des éprouvettes

Prélèvement d’un plateau sur quartier (L = 800 mm et e = 50 mm)

Séchage à 12%

Distinguer du vecteur directeur \(\vec{L} \) de la direction (L) du plan ligneux.

Fig. 1 : Réalisation des éprouvettes (Ep. = Eprouvette, e = épaisseur et L = longueur; à
Une fois les billons récoltés, ces derniers sont transférés à la Société Nationale des Bois du Gabon (SNBG) pour l’opération d’usinage et un séchage à 12% d’humidité finale. La Fig. 1 ci-dessus montre le type de débits voulus ainsi que les éprouvettes obtenues à partir de ces débits, destinées à différents types d’essais. L’opération d’usinage effectuée est un débit en ‘plot’, c’est-à-dire le débit d’une bille ou d’un billon de bois en plateaux par sciage selon des plans parallèles, sans équarrissage préalable (voir figure ci-dessus). Nous prélevons ensuite un plateau sur quartier (moelle présente) pour l’analyse radiale des propriétés technologiques. Ce plateau est repris et usiné pour obtenir des éprouvettes de dimensions 20 × 20 × 400 mm (sens R,T, L).

Méthodologie

Les différents éléments constitutifs du bois remplissent dans l’arbre les fonctions de conduction, de soutien et de protection. Les propriétés mesurées sont ici choisies selon les fonctions associées à ces propriétés et selon leurs intérêts technologiques au regard de l’utilisation future du bois pour l’industrie. Les éprouvettes obtenues seront donc soumises à différentes expérimentations, pour déterminer : (i) les traits anatomiques du plan radial ligneux (vaisseaux) pour la fonction hydraulique (conduction), (ii) la densité, le module d’élasticité, le module de rupture et l’angle des microfibrilles pour la fonction mécanique (soutien), (iii) le taux d’extractibles et la duraminisation pour la fonction de protection. D’autres propriétés d’intérêt technologiques seront également recherchées à savoir, le Point de Saturation des Fibres (PSF) et le retrait.

Résultats attendus

Ce travail devrait nous permettre de connaître les propriétés technologiques de nos nouvelles essences, d’établir les relations entre les différents tempéraments écologiques et les propriétés obtenues, de faire des comparaisons des stratégies de développement intra et inter essences et enfin, d’observer la variation des propriétés mesurées en fonction de la position radiale dans l’arbre.

Références

Peut-on détecter des contraintes résiduelles par micro-spectroscopie RAMAN au sein d’échantillon de bois de peuplier ?

Aubin Normand¹, Anne M. Charrier¹, and Aude L. Lereu²*
¹Aix Marseille Univ, CNRS, CINaM, Marseille, France
² Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France

*Mots clés : contrainte de maturation, micro-spectroscopie RAMAN, bois de tension

Contexte et objectifs
La génération de tension interne dans le bois lors de la croissance est un fait bien établi¹² qui contribue au phénomène de réorientation et à l’équilibrage des contraintes subis par le bois. Ces contraintes ont été extensivement mesurées à l’échelle macroscopiques³. Dans le cas des arbres angiospermes, le rôle de la couche G apparaissant dans le bois de tension dans la génération de cette tension n’est plus à démontrer. Cependant, l’origine de cette tension à l’échelle de la paroi cellulaire ne fait pas consensus¹⁴. L’apport de nouvelles informations sur l’état de contrainte de chacune des couches, ou même de chacun des constituants de la paroi cellulaire, serait précieux pour supporter ou disqualifier certaines de ces théories.

Plusieurs études ont montré la sensibilité de la spectroscopie RAMAN à la présence de contraintes au sein de matériaux lignocellullosiques en observant les décalages spectraux de certains pics lors d’un essai de traction⁵–⁷. Un décalage important du pic situé à 1095cm⁻¹, correspondant à la cellulose, a notamment été montré. La technologie micro-RAMAN permet quant à elle d’atteindre une résolution de l’ordre de 350nm, suffisante pour discriminer plusieurs couches pariétales. La détection de décalages spectraux par cette technologie au sein d’échantillons de bois peut donc être un outil important pour explorer la distribution des contraintes entre les couches pariétales de bois.

L’objectif ultime de cette étude est de répondre aux questions suivantes :
- Des contraintes résiduelles dans des échantillons de bois de tension/normal/opposé persistent-elles après la coupe ?
- La cellulose est-elle dans un état tendu in vivo et relaxée lors de la coupe, ou au contraire est-elle dans un état de compression après la libération des contraintes ?

Pour cela, nous examinons de manière systématique le décalage éventuel de certains pics spectraux entre les différentes couches d’échantillon de bois de tension (T), opposé (O) et normal (N). Ces décalages pouvant être attribués soit aux modifications chimiques induites sous la contrainte soit à des contraintes résiduelles, nous discuterons de l’introduction d’un terme correctif, visant à compenser l’effet des variations en composition chimique sur la position spectrale des pics.

Matériaux et méthodes
Les échantillons sont extraits de jeunes peupliers de 7 mois (Populus euramericana) cultivés en champ. Les échantillons de bois de tension proviennent de pousses dont la réorientation a été forcée en étant contraint par un tuteur et sont comparés à des échantillons provenant de plantes
ayant grandi sans tuteur. Pour éviter l’effondrement de la couche G, les échantillons sont inclus en résine puis ultra-microtomés.

La spectroscopie micro-RAMAN est une technique de spectroscopie vibrationnelle permettant de caractériser la composition chimique d’un échantillon en étudiant la réponse vibrationnelle lors de la sollicitation par un laser. À chaque molécule, chaque liaison atomique correspond une bande vibrationnelle. Ici, un objectif X100, NA = 0.9, couplé à un laser de longueur d’onde \(\lambda = 532 \text{nm} \) ont été choisis pour obtenir une grande résolution (360nm selon le critère de Rayleigh). La résolution spectrale est de 0.68cm\(^{-1}\) et la bande détectée va de 515 cm\(^{-1}\) à 1730 cm\(^{-1}\). Le temps d’acquisition pour chaque spectre est fixé à 4s, la puissance du laser à 14mW. Chaque cartographie est composée de 14400 pixels (120x120 pts, 40x40 \(\mu \text{m} \)).

Le processus de traitement des spectres se déroule comme suit :

1. Détection et suppression des rayons cosmiques.
2. Lissage par la méthode de Savitsky Golay.
3. Suppression de la ligne de base par l’utilisation de l’algorithme airPLS\(^8\).
4. Intégration selon les bandes spécifiques correspondant à la lignine, (1250-1350 cm\(^{-1}\),1560-1650cm\(^{-1}\), à la cellulose (1080-1135cm\(^{-1}\),1360-1395cm\(^{-1}\)) et génération des cartographies associées.
5. Partitionnement de données par k-mean clustering\(^9\). Cet algorithme permet de classer chacun des 14400 spectres composant une carte en k cluster en fonction de leur similitude. Le nombre k est choisi égal à 3 dans le cas du bois normal et opposé (CML, S2 et RESIN) et 5 dans le cas du bois de tension (CML, S2, G, G effondrée et RESIN). Le spectre moyen de chacun des clusters est ensuite calculé et permet de réduire considérablement les temps de calcul, en ne travaillant que sur 3 ou 5 spectres plutôt que 14400.
6. Finalement, les spectres moyens des clusters sont déconvolus par une combinaison de fonctions de Lorentz à l’aide de l’algorithme PeakFit afin de déterminer les positions de chaque pic.

Pour chaque échantillon (T, O, N), 3 cartes sont effectuées et pour chacune des couches les positions des pics sont relevées.

Résultats et discussion

Comme mentionné, l’étude de la position spectrale des pics et la détection de décalage significatif entre différents échantillons ou différentes couches, peut résulter de présence de contraintes internes. Nous nous intéressons ici à trois pics particulièrement intenses : 1092 cm\(^{-1}\) et 1123 cm\(^{-1}\) pour la cellulose et 1600 cm\(^{-1}\) pour la lignine. Pour rappel, c’est pour le pic à 1092 cm\(^{-1}\) que le décalage le plus important a déjà été détecté lors d’essais de traction sur des fibres de bois\(^5\)–\(^7\).
La figure 1 présente la position moyenne et l’écart type des 3 mesures effectuées pour chaque couche pariétale de chaque échantillon.

Le pic à 1092 cm\(^{-1}\) présente un décalage significatif vers des longueurs d’onde supérieures pour les couches secondaires par rapport aux lamelles mitoyennes (ML) et à fortiori de la couche G. Cette observation, mise en relation avec les études effectuées sur des échantillons soumis à des essais de traction semble révéler que la couche G serait en compression après la coupe.

Cependant, dans notre étude, le décalage le plus important est mesuré pour le pic à 1123 cm\(^{-1}\), et dans la direction opposée au pic à 1092 cm\(^{-1}\). Il est difficile d’expliquer alors comment deux pics correspondants à la cellulose cristalline peuvent exhiber un comportement aussi opposé. Notons tout de même que le décalage de 6 cm\(^{-1}\) entre la couche G du bois de tension et la couche ML du bois opposé correspond à une contrainte colossale de 2 GPa en considérant le taux mesuré par Gierlinger et al.\(^5\). Enfin, aucune différence significative n’est observée pour le pic de lignine à 1600 cm\(^{-1}\).

Ces résultats nous ont amené à nous questionner sur la validité de telles mesures, et les sources éventuelles de perturbation. En premier lieu, le rôle de la variation de la composition chimique sur la position des pics reste à élucider.

L’objectif suivant est donc de déconvoler l’effet de la composition chimique de la présence de contraintes sur la position spectrale des pics. Pour cela, nous avons combiné numériquement un spectre de cellulose pure avec un spectre de lignine pure (obtenues après traitement chimique d’échantillon de bois normal) dans des proportions différentes. Nous avons ainsi évalué la variation de la position des pics d’intérêts en fonction de la concentration en cellulose et en lignine.
La figure 2 montre que la composition chimique a bien un effet sur la position des pics. Pour chaque pic, un terme correctif sous la forme d’une fonction polynomiale est introduit pour corriger la position des pics relevée précédemment pour les échantillons de bois normal, de tension et opposé.

Fig. 2 : Terme correctif de la composition chimique pour les pics à 1092 cm⁻¹ et 1123 cm⁻¹

En particulier, le terme correctif est de signe opposé pour les pics à 1092 cm⁻¹ et 1123 cm⁻¹. Finalement, les décalages précédemment observés sont compensés par ce terme correctif. Ce résultat montre l’importance de la prise en compte de la composition chimique lors de la comparaison de région différente pour la recherche de contraintes internes.

Remerciements

Ce travail a été finance par la fondation A*MIDEX, project N°: A-M-AAP-EI-17-10-170224-18.04-CHARRIER-E et le programme PICS 2019 du CNRS. Nous remercions Andrei Kabashin du LP3 à Marseille pour nous avoir donné accès à sa plateforme de micro-RAMAN.

Références

Impact des différents itinéraires sylvicoles sur les sollicitations mécaniques perçues par les tiges de Douglas : snapshot à 50 ans

NOYER Estelle¹, CONSTANT Thiéry¹, NINGRE François¹, SEIFERT Thomas², DLOUHA Jana¹

¹Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
²Albert-Ludwigs-Universität Freiburg Tennenbacher Straße 4, 79106 Freiburg, Germany

noyer.estelle@gmail.com

Mots clefs : vent ; densité de peuplement ; Douglas ; déformations ; acclimatation ; statut.

Contexte et objectifs

Le remaniement des itinéraires sylvicoles est une des stratégies d’adaptation en gestion forestière pour préserver l’écosystème forestier face au changement climatique. La diminution de la densité de plantation apporte des résultats probants pour certaines espèces sur la résilience des arbres aux épisodes de sécheresse (Bottero et al., 2017) mais augmente par ailleurs les contraintes induites par le vent (Gardiner et al., 2016).

L’acclimatation d’un arbre face au vent est engendrée par la perception du signal mécanique émis lors de la pression du vent sur la structure. Ce signal est le régime de déformations des cellules constituant l’arbre (Moulia et al., 2015). En conséquence, un arbre acclimaté au vent présentera des déformations plus faibles face à un chargement donné qu’un arbre non acclimaté. Néanmoins, peu d’études se focalisent sur l’analyse des déformations de la tige des arbres en conditions naturelles (Bonnesoeur et al., 2016). Dans le cas de l’impact de la densité de peuplement, la littérature se porte essentiellement sur les traits impliqués dans l’acclimatation face au vent, tels que les propriétés du bois ou encore l’architecture de l’arbre, et rapporte que ces traits sont impactés par la densité initiale de peuplement (Gardiner et al., 1997; Nicoll et al., 2008; Lasserre et al., 2009) menant à des arbres qualifiés de plus stables structurellement face au vent (Fournier et al., 2013).

L’objectif de cette étude est d’estimer l’impact des différents itinéraires sylvicoles et donc de l’acclimatation à différents stades de croissance sur le régime de déformations perçues et en conséquence, la résistance au vent d’un peuplement de Douglas (Pseudotsuga menziesii) âgés de 50 ans, stade auquel un risque de renversement en cas de vent fort est élevé. Pour cela, le régime de déformations d’arbres adultes de statuts différents et issus d’itinéraires sylvicoles contrastés a été suivi pendant deux mois sur une douzaine de tiges de Douglas, espèce d’importance sylvicole et industrielle.

Matériel et méthodes

Le suivi des déformations a été réalisé du 19 février 2021 au 10 avril 2021 en équipant tous les arbres de jauges de déformations à 1.30 m de hauteur à la surface du tronc face à la direction du vent et perpendiculaire à celle-ci. L’enregistrement est réalisé à 4 Hz via des
modules V-Link et SG-Link connectés à des bases d’acquisition WSDA-2000 (MicroStrain, Wiliston, VT, USA). Le signal haute-fréquence est extrait du régime de déformations grâce à l’utilisation d’une médiane mouvante sur une fenêtre de 10 minutes. La déformation maximale ainsi que sa direction dans le tronc sont estimées en ajustant une fonction sinusoïdale sur les valeurs des jauges de déformations installées sur chaque arbre.

En parallèle, le régime du vent est suivi par la station météorologique de Münsingen-Apelfelstetten en Allemagne (48.38°N, 9.48°E). La vitesse du vent, la vitesse maximale des rafales et leur direction sont moyennées toutes les 10 minutes (www.dwd.de).

Hypothèses testées

Pour ce poster, deux hypothèses seront testées :

H1 : L’acclimatation aux contraintes mécaniques exercées depuis le jeune stade va permettre aux arbres issus de peuplement espacé de mieux s’acclimater, d’être plus résistants et donc de présenter un régime de déformations plus faible.

H2 : Ici nous supposons que les arbres dominants, plus exposés au vent, percevront une amplitude plus faible du signal mécanique par rapport à un arbre dominé auquel le peuplement sert de tampon et atténue le signal. La différence entre les statuts est une question ouverte car il s’agit, à notre connaissance, d’une première mesure expérimentale de cette différence.

Remerciements

This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE)

Références

Comportement en flexion d’une poutre en bois abouté : cas de l’okan (Cylicodiscus gabunensis)

NYOBE Charly Julien1,3, OUM LISSOUCK René1,2, AYINA OHANDJA1

1 Laboratoire de Civil Engineering et Mécanique, ENSP de Yaoundé I, Cameroun
2 IUT Bois de Mbalmayo, Cameroun
3 Département Génie Civil, ENSET de Douala, Cameroun
charly_nyobe@yahoo.fr

Mots clés : Bois, bois d’ingénierie, bois abouté, colle, essai de flexion.

Contexte et objectifs
Au Cameroun, l’utilisation du bois dans la construction est très minime pour ne pas dire inexistante (échafaudage, coffrages). Il est constaté des utilisations comme la fabrication des ameublements, menuiseries, décoration…etc.

De nos jours, du fait des problèmes environnementaux, la demande pour les constructions à base de bois s’est considérablement amplifiée. Il convient donc de concevoir, dimensionner et réaliser les éléments de structures en bois (Bustos Avila 2003). Parmi ces éléments de structure on peut citer les poutres. La poutre est un élément de construction allongé, qui peut atteindre de longue portée. Le bois massif abouté est généralement le produit de bois d’ingénierie retenu pour la fabrication des poutres de bois à longue portée (Dagenais 2007, CTBA 2007). Ces études sont menées sur des bois tempérés. Cependant les bois tropicaux ont des résistances mécaniques supérieures aux bois tempérés (Mvogo 2008). Il est donc important de mener des études sur les bois tropicaux.

Le but principal de ce mémoire est d’étudier expérimentalement l’aboutage du bois par un essai de flexion d’une poutre en bois abouté.

Matériel et méthodes

Choix de l’essence de bois
Le bois étudiés est l’Okan (Cylicodiscus gabunensis). Les utilisations de l’Okan sont multiples : parquet, charpente, travaux hydrauliques, construction navale, ponts, traverse chemin de fer, tournerie, sculpture, fond de véhicule ou de conteneur… (CIRAD, 2011).
Fig. 1 : Eprouvettes avant collage
Fig. 2 : Eprouvettes finies

Essai flexion 4 points

La contrainte de rupture est déterminée par des essais statiques selon la norme NF EN 408+A1 (AFNOR, 2012). Il s’agit d’essais de flexion quatre points réalisés dans des conditions de chargement quasi statique (Fig. 3)

Fig. 3 : Caractéristiques géométriques de la poutre : a) sans joint, b) avec entures à plat, c) avec entures sur face.
Les résultats expérimentaux sont obtenus à partir de calculs de RDM classique sur la théorie des poutres par les formules suivantes :

\[
\sigma_R = \frac{3aF_{\text{max}}}{bh^3}
\]

Où \(\sigma_R \): La contrainte maximale de flexion en [MPa],
\(F_{\text{max}} \): La force à la rupture en [N],
\(a \): La distance entre les appuis et la force la plus proche 300 mm,
\(h \): La hauteur égale à 60 mm.

Résultats et discussion

Nous ne présentons ici, qu'un récapitulatif des résultats (tab.1). On trouve les valeurs numériques des contraintes de rupture des 3 poutres (sans joint, avec entures à plat, avec entures sur face).

<table>
<thead>
<tr>
<th>Types</th>
<th>Nombre d'éprouvettes</th>
<th>Masse volumique (kg/m³)</th>
<th>Contrainte (\sigma_{\text{max}}) (MPa)</th>
<th>Contrainte (\sigma_{\text{min}}) (MPa)</th>
<th>Moyenne (MPa)</th>
<th>Ecart-type (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sans joint</td>
<td>50</td>
<td>1015</td>
<td>194,31</td>
<td>96,31</td>
<td>134,05</td>
<td>25,1</td>
</tr>
<tr>
<td>Avec entures à plat</td>
<td>50</td>
<td>1015</td>
<td>91,92</td>
<td>73,95</td>
<td>85,61</td>
<td>4,58</td>
</tr>
<tr>
<td>Avec entures sur face</td>
<td>50</td>
<td>1015</td>
<td>83,43</td>
<td>58,13</td>
<td>109,35</td>
<td>5,83</td>
</tr>
</tbody>
</table>

On remarque que les valeurs de la résistance du bois sans aboutage sont plus grandes que celles du bois aboutées (avec entures à plat, avec entures sur face). La littérature rapporte que les joints d'entures diminuent en général la résistance de 25% (Pommier, 2006). C'est presque le même ordre dans notre cas mais nous pensons aussi que cette diminution est due dans notre cas à la colle utilisée (colle blanche, non industrielle).
Conclusion et perspectives

Ce travail rentre dans le cadre d'un projet de recherche de valorisation des ressources premières du Bassin du Congo à savoir le bois. Cette matière, souvent peu ou non utilisée en construction dans notre pays, demande à ce qu'on s'y intéresse le plus près. Le but principal était d'étudier expérimentalement l’aboutage du bois par un essai de flexion d’une poutre en bois abouté. Nous avons constaté que le bois abouté est un procédé de transformation du bois massif qui permet d'avoir des éléments de grande longueur ayant sensiblement la même résistance.

Références

Mesure « en routine » des profils d’humidité dans le chêne lors du séchage et confrontation à la simulation numérique

OUERTANI Sahbi¹, STEPHAN Antoine¹, RÉMOND Romain¹

¹Université de Lorraine, LERMAB, ENSTIB, 27 rue Philippe Séguin, 88051 Epinal, France, sahabi.ouertani@univ-lorraine.fr

Mots clés : Profil d’humidité, Chêne, séchage, atténuation de rayons-X, perméabilité relative, méthode inverse

Contextes et objectifs
La mesure du champ d’humidité dans le bois lors du séchage/humidification donne des informations précieuses pour tester la formulation des modèles de transferts couplés masse-chaleur et ainsi valider leurs prédictions. Plusieurs approches ont été utilisées pour cette mesure allant des méthodes simples par double pesée ou électriques aux plus complexes par RMN, MRI, rayons-X. De nombreux travaux ont utilisé dans ce but cette dernière technique avec succès (Baettig et al., 2006; Derome et al., 2005; Desmarais et al., 2016; Roels and Carmeliet 2006; Sandberg and Salin 2012) mais très peu ont été appliqués au chêne. Vérifier le potentiel prédictif des modèles sur l’évolution du champ d’humidité dans un avivé est indispensable pour simuler correctement le développement des contraintes mécaniques lorsqu’il est soumis aux conditions hygrothermiques fluctuantes de son environnement.

L’objectif de ce travail consiste à :
- mesurer les profils de teneur en eau dans un échantillon de bois par atténuation de rayons-X avec un appareil adapté à des mesures de routine,
- appliquer cette approche au bois de chêne,
- confronter les profils d’humidité mesurés à ceux prédits par TransPore, code numérique permettant de simuler les transferts couplés de chaleur et de masse en milieu poreux,
- étudier le potentiel de cette mesure de routine pour identifier par méthode inverse des paramètres difficiles à mesurer expérimentalement comme la perméabilité relative liquide.

Matériel et méthodes
Détermination expérimentale des profils d’humidité et de la cinétique lors du séchage
Des échantillons de chêne à l’état vert de dimensions 50mm×50mm×20mm respectivement selon les directions radiale (R), longitudinale (L) et tangentielle (T) ont été séchés à l’aide d’une enceinte climatique (HCP 105, Memmert) à 40°C et 65% d’humidité relative. La masse de l’échantillon a été mesurée en continue à l’aide d’une balance avec une précision de ± 0.01 g. Au cours de séchage, les échantillons de chêne ont été retirés de l’enceinte climatique et scannés à l’aide d’un analyseur de densité à rayons-X (DAX-5000-Grecon). Afin de reproduire le séchage d’une planche large et de grande longueur, les transferts massiques ont été bloqués par un ruban adhésif en aluminium sur les deux extrémités du plan (RT) et les deux faces latérales du plan (LT). Le transfert d’humidité lors du séchage est alors unidirectionnel selon la direction tangentielle. L’adhésion du ruban aluminium a été renforcée sur les deux extrémités (RT) à l’aide d’une résine époxy, contrairement aux deux autres faces (LT) afin de pouvoir le retirer/remettre respectivement avant/après chaque scan (Fig.1).

Des tests préliminaires avec des cales de bois de teneurs en eau différentes (couvrant toute la plage de 8% à 105%) ont permis de vérifier la fiabilité de l’équipement dans la mesure de la
densité du matériau humide. La conversion des profils de densité mesurés en profils de teneur en eau requiert la densité anhydre moyenne et le retrait volumique moyen mesurés. L’approche effectuée est similaire à celle présentée par Hansson and Cherepanova (2013). L’incertitude de mesure du Grecon Dax 5000 est d’environ ±15 kg/m3, soit après conversion pour notre application ±2.5% d’humidité. La variation de la position de chaque point de mesure avec le retrait du bois n’est pas prise en compte en l’absence de marqueurs de position.

Simulation des transferts de masse et de chaleur

Le code TransPore (Perré et Giovanni 1990; Perré et Turner 1999) a été utilisé pour simuler le séchage des échantillons de bois de chêne. Les conditions réelles vues par les échantillons sont utilisées pour simuler le séchage des échantillons. Le code utilise en entrée les paramètres moyens propres à l’essence et certaines propriétés mesurées dans le cadre de ce travail telles que la perméabilité gazeuse, la masse volumique et l’isotherme de sorption.

Fonction objective

Pour mesurer par méthode inverse des paramètres d’entrée du modèle à partir de ces mesures, une fonction objective a été définie comme étant :

$$
\delta = A \times \zeta_1 + B \times \zeta_2
$$

avec

$$
\zeta_1 = \sum_{i=1}^{n} \left(MC_i^{\text{calc}} - MC_i^{\text{mes}} \right)^2
$$

et

$$
\zeta_2 = \sum_{i=1}^{n} \left(\text{Gap}_i^{\text{calc}} - \text{Gap}_i^{\text{mes}} \right)^2
$$

ζ_1 est l’erreur sur la cinétique moyenne alors que ζ_2 est l’erreur sur la forme du profil de teneur en eau (Fig.2). A et B quantifient la proportion de ζ_1 et ζ_2 dans la fonction objective en respectant l’égalité A+B=1. MC_i^{calc} et MC_i^{mes} sont respectivement les teneurs en eau moyennes prédites et mesurées. Les indices i et j représentent respectivement le temps et la position dans l’épaisseur de l’échantillon. n est le nombre total de mesures et m est le nombre total de points scannés par l’analyseur à rayons-X. $\text{Gap}_i^{\text{calc}}$ et $\text{Gap}_i^{\text{mes}}$ sont respectivement l’écart entre les teneurs en eau locales mesurées et prédites (MC_i^{calc}, MC_i^{mes}) (Fig.2).

L’algorithme du downhill-Simplex method a été utilisé pour minimiser la fonction objective en faisant varier certains paramètres libres comme la perméabilité relative liquide, utilisée dans la formulation de la migration liquide lorsque deux phases fluides coexistent au sein du milieu poreux (gaz-liquide).
Résultats et discussion

La figure 3a et 3b présentent respectivement la confrontation des mesures des profils de teneur en eau et de la cinétique moyenne à celles prédites par le code TransPore en utilisant les valeurs des grandeurs mesurées sur notre échantillon (voir précédemment) ou venant de la littérature pour le chêne, mais aussi des paramètres et expressions donnés dans Perré et Turner (1999). Cette confrontation montre la bonne capacité du modèle à prédire les profils de teneur en eau ainsi que la cinétique de séchage moyenne malgré l’utilisation des expressions de la pression capillaire (Spolek and Plumb, 981) et de la perméabilité relative liquide plutôt destinées aux résineux.

Utilisation de ces données pour la mesure par méthode inverse

Une analyse de sensibilité a été menée pour apprécier comment l’incertitude des entrées du modèle se propage sur les sorties du code au niveau de la cinétique et de la forme du profil d’humidité (Fig.4). En utilisant conjointement ces deux sorties il est possible de séparer les influences du coefficient de diffusion (D_b) et du coefficient de transfert externe (h) du triptyque (pression capillaire (P_C) - perméabilité liquide (K_{Li}) - perméabilité relative liquide (k_{Li})). Il est en revanche difficile d’isoler les effets respectifs des paramètres de ce triptyque sur les sorties. La figure 5 montre un exemple de compensation donnant pratiquement les mêmes profils et cinétiques pour deux couples différents de P_C et k_{Li}. Ces deux courbes obtenues par minimisation de la fonction objective affectent peu la qualité des prédicitions. L’identification de l’expression de k_{Li} par méthode inverse nécessite donc de connaître les deux autres. Ceci reste donc une limite de notre approche lorsque ces données sont manquantes comme c’est le cas pour le chêne.
Conclusion et perspectives

Remerciements

Ce travail a été réalisé dans le cadre du projet SMARTRENO financé par EDF (https://smartreno.univ-lr.fr/).

Références

Mise en évidence de l’effet retardé de l’humidité sur le comportement mécanique d’une poutre de bois

PAMBOU NZIENGUI Claude Feldman¹, MANFOUMBIBOUSSOUGOU Nicaise¹, MOUTOU PITTI Rostand²,³

¹Université des Sciences et Techniques de Masuku (USTM), Ecole Polytechnique de Masuku (EPM), Département de Génie Civil, BP 941 Franceville, Gabon
²Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont Ferrand, France
³CENAREST, IRT, BP 14070, Libreville, Gabon

pclaudefeldman@gmail.com

Mots clefs : Chargement à long terme ; Poutre entaillée ; Variation d’humidité ; diffusion de l’humidité ;

Contexte et objectifs
Ce travail présente l’étude expérimentale du comportement mécanique des poutres de bois soumises aux conditions environnementales extrêmes, sous un chargement à long terme. L’étude consiste à rendre compte de l’effet des variations de l’humidité interne (HI) du bois sur son comportement en structure, en considérant un paramètre de diffusion α déterminé grâce à une méthode expérimentale simpliste. La mise en évidence des paramètres de diffusion permet de proposer des lois de comportement typiques des matériaux soumis à un environnement variable. Le travail se base essentiellement sur la loi de diffusion de Fick et de l’expression rhéologique de la déformation hydrique du bois tel que défini dans la littérature par (Olek et al., 2016).

Matériel et Méthodes
La littérature sur l’impact des changements environnementaux sur les structures en bois montre que les variations des conditions hydriques, dans le bois, a un grand impact sur son comportement mécanique (Olek et al., 2016 ; Hunt, 1986). Il est donc primordial de mettre sur pied des dispositifs expérimentaux capables de prendre en compte ce phénomène. Dans cette perspective un dispositif expérimental spécifique à été monté. Il est composé de deux plaquettes en inox et de deux capteurs LVDT montés pour suivre le déplacement transversal des poutres durant leur chargement (Fig. 1).

Fig. 1 : Dispositif expérimental spécifique utilisé pour suivre les variations transversales des poutres

En se basant sur la littérature, sur la géométrie de l’échantillon et du type d’espèce étudié, la diffusion de l’humidité dans le bois nécessite plusieurs heures ou jours pour atteindre l’équilibre
hydrique dans le bois. Pour une diffusion unidirectionnelle de l’eau dans le bois, Fick propose la loi suivante :

\[\frac{\partial w}{\partial t} = \alpha \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} \right) \] (1)

Où \(\alpha \) est un coefficient de diffusion déterminé suivant la direction x et w l’humidité interne de l’échantillon de bois considéré. En considérant l’expression rhéologique de la déformation hydrique et tenant compte simplement de la variation transversale de la poutre, la variation transversale \(U_h \) peut prendre la forme suivante

\[U_h = \beta \frac{H}{2} \left[w(\%) - w_i(\%) \right] \] (2)

Où \(\beta \) est le coefficient de retrait-gonflement transversal et H la hauteur de la poutre.

Résultats et discussions

La Fig. 2a présente l’évolution dans le temps de l’humidité interne mesurée (\(w^{\text{mes}} \)) sur la poutre et l’humidité interne corrigé (\(w^c \)) à partir de l’équation 1. On observe des erreurs de mesures caractérisées par des fluctuations d’humidité très importantes (Fig. 2a). La Fig. 2b présente le résultat obtenu sur la correction apportée sur la déformation transversale mesurée (\(U_h^{\text{mes}} \)). Cette correction est réalisée à partir du couplage des équations (1) et (2) grâce notamment à la détermination des paramètres de diffusion \(\alpha \) et \(\beta \).

Fig. 2 : Relations entre les évolutions expérimentales et analytique de l’humidité interne du bois (a) et la déformation (b).

Conclusion et perspectives

Le présent travail consiste à mettre en évidence l’importance de la prise en compte de la diffusion de l’eau dans le bois en structure. Les études qui sont menées permettent de proposer des modèles de diffusion à partir de la loi de Fick en déterminant des paramètres de retrait-gonflement qui règissent son comportement en environnement variable. Les résultats obtenus jusqu’à présent permettent de classer ces paramètres en fonction de l’espèce et du milieu dans lequel l’essai est réalisé. D’autres campagnes d’essais sont envisagées afin de généraliser et confirmer les résultats obtenus.

Références

Influence de la réticulation du réseau fibrillaire cellulosique sur le comportement élastique effectif de la paroi cellulaire du bois

PHAN Nhat-Tung1, AUSLENDER François1, GRIL Joseph1, MOUTOU PITTI Rostand1,2

1Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, FRANCE
2CENAREST, IRT, BP 14070, Libreville, GABON
nhat_tung.phan@uca.fr

Mots clefs : comportement élastique effectif ; paroi cellulaire ; homogénéisation numérique ; éléments finis ; fibrilles ondulées et interconnectées

Contexte et objectif général
Ces dernières années, l’utilisation du bois s’est de plus en plus intensifiée permettant d’offrir une ressource verte alternative pour l’industrie. Les avantages de ce matériau sont principalement sa disponibilité et ses excellentes performances mécaniques par rapport à la densité, expliquées par l’organisation structurelle de ce matériau. Toutefois, l’étude du bois en tant que matériau a mis en évidence une grande variabilité des propriétés mécaniques et diverses échelles d’hétérogénéité (Fig. 1). Afin d’améliorer notre efficacité à concevoir des produits à base de bois, une meilleure compréhension des relations structure-propriétés est nécessaire Dans cet article, l’influence de la réticulation du réseau fibrillaire cellulosique sur le comportement élastique effectif de la paroi cellulaire du bois est étudiée en appliquant des techniques d’homogénéisation numérique. Classiquement, les fibrilles sont supposées être droites et parallèles les unes par rapport aux autres. L’apport de ce travail consiste à décrire de manière plus réaliste la morphologie de la paroi cellulaire en prenant en compte des fibrilles incurvées et interconnectées entre elles.

Fig. 1 : La structure hiérarchique du bois (Rafsanjani, 2013).

La cellule élémentaire périodique, sur laquelle s’appuie le schéma d’homogénéisation, est issue de la description de la paroi secondaire qui contribue principalement aux propriétés mécaniques et physiques du tissu cellulaire. Les parois du bois sont composées typiquement de 3% de paroi primaire, 13% de couche S1, 80% de couche S2, 4% de couche S3 (Fengel et Stoll, 1973), la couche S2 dominante étant constituée principalement de fibrilles de cellulose inclinées de 0° à environ 30°. Aussi, du fait de cette prédominance de la couche pariétale S2, le comportement effectif de la paroi cellulaire sera évalué au cours de cette étude par la détermination du comportement effectif de la couche S2.
Description de la microstructure réelle de la paroi cellulaire

Dans cette étude, afin de décrire la microstructure de la paroi S₂, la représentation proposée par Salmén (2015) est utilisée. La couche S₂ peut être considérée comme un composite renforcé dont la matrice est constituée par un mélange d’hémicelluloses de type xylane et de lignine et où les renforts sont les fibrilles. Ces dernières sont constituées d’un agglomérat de microfibrilles de cellulose cristalline jointes par de l’hémicellulose de type glucomannane, la liaison entre fibrilles et matrice étant également assurée par des glucomannanes (Fig. 2a). Par ailleurs, les dimensions latérales des fibrilles du bois sont typiquement de l’ordre de 20 nm et celles des microfibrilles de 3 nm (Fig. 2b). De plus, en ce qui concerne la direction axiale des fibrilles, bien qu’il n’existe pas de données directes dans la littérature, on peut néanmoins estimer, au vu de photographies au microscope électronique à balayage (MEB) de Ruel (1984), réalisées sur le bois délinéifié par des champignons, à 0.3 μm l’ordre de grandeur de la distance entre les points de contact entre fibrilles.

Fig. 2 : (a) Structure de la paroi cellulaire indiquant la disposition des différents polymères du bois dans la paroi S₂; (b) Structure schématique des fibrilles (Salmén et Burgert, 2009).

Au cours de cette étude, on considèrera le comportement des fibrilles comme connu et évalué en première approximation par les valeurs expérimentales de Sakurada (1962) qui correspondent à de la cellulose réelle (et non parfaite comme c’est de cristal de cellulose dont sont a priori constituées les microfibrilles).

Méthodologie

Description de la cellule élémentaire

Fig.3 : Description géométrique de la microstructure : (a) à 1 sens d’ondulation (1S); (b) à 2 sens d’ondulations (2S)

Dans cette étude, nous allons proposer 3 descriptions de la cellule élémentaire:
- modèle 0S (à des fins de comparaison) : les fibrilles sont rectilignes et parallèles entre elles;
- modèle 1S (Fig.3a) : chaque fibrille ondule dans le plan (1 2) et est en contact linéique périodique avec deux voisines;
- modèle 2S (Fig.3b) : chaque fibrille oscille dans les deux plans (1 2) et (1 3), son centre suivant une hélice, et entre en contact linéique périodique avec 4 voisines.

Description du maillage
Le maillage volumique des modèles 0S, 1S et 2S est généré en utilisant des éléments cubiques à 8 nœuds dans le code de calcul Cast3M (Fig.4).

Calcul du comportement effectif
Pour calculer le comportement effectif de la cellule élémentaire périodique, nous utilisons une approche en déformation et appliquons des conditions aux limites périodiques (CLP) (Bornert et al. 2001). Pour cela, on considérera que les fibrilles ont un comportement élastique isotrope transverse et que la matrice est élastique linéaire. On supposera de plus une interface parfaite entre la matrice et les fibrilles. Classiquement, les propriétés élastiques effectives de la paroi S2 sont obtenues en appliquant 6 différents chargements élémentaires tout en résolvant le problème local d’élasticité associé à la cellule élémentaire soumise à ces CLP. Par ailleurs, par des arguments de symétrie liés à la géométrie de la cellule élémentaire et au comportement des phases, on montre que le comportement effectif est nécessairement orthotrope.

Résultats et discussions
Afin de déterminer l’influence des ondulations sur le comportement de la paroi, nous avons réalisé une étude paramétrique au cours de laquelle nous avons fait varier différents paramètres géométriques (rapport de forme \(r_o = L_1/L_2 \), concentration volumique des fibrilles \(c = f_2f_3 \), proportion de matrice lamellaire sur lenticulaire \(r_\lambda = \frac{V_{lamellaire}}{V_{lenticulaire}} = \frac{1-f_2}{f_2(1-f_2)} \) et matériaux (contraste entre phases : ratio \(E_L^F/E_M^M \) où \(E_L^F \) est le module d’Young longitudinal des fibrilles et \(E_M^M \) est le module d’Young de la matrice). A cette intention, nous avons évalué pour différentes valeurs de ces paramètres les composantes \(C_{ij} \) de la rigidité effective associées aux modèles de microstructure 1S et 2S et l’avons comparé au modèle 0S pour lequel les fibrilles n’ont pas d’ondulation. A titre d’exemple, nous avons reporté sur la Fig. 5, l’évolution en fonction de la concentration c des composantes les plus fortement influencés.

204/292
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

par l’effet des ondulations, à savoir $\bar{C}_{66} = \bar{C}_{12}$ et $\bar{C}_{55} = \bar{C}_{13}$ (les 2 modules de cisaillement effectifs).

Fig. 5 : Evolution des composantes effectives \bar{C}_{ij} en fonction de la concentration des fibres pour les 3 modèles ($r_1 = 1.0$, $r_2 = 7.5$, $\log_{10}(E_i/E_{55}) = 3.0$)

Conclusions et perspectives

Les comparaisons effectuées dans cette étude nous ont permis de montrer que les modèles 1S et 2S décrivent de manière similaire les coefficients les plus influencés \bar{C}_{12}, \bar{C}_{13} (ou de manière équivalente \bar{C}_{66} et \bar{C}_{12}) par l’effet d’ondulation dans le plan (1 2). Par ailleurs, le modèle 2S met en évidence l’effet d’ondulation des fibrilles dans le plan (1 3) sur les composantes effectives \bar{C}_{13}, \bar{C}_{13} - ou \bar{C}_{55} et \bar{C}_{13} - de la paroi cellulaire.

Dans le but d’étudier l’influence des ondulations des fibrilles non plus uniquement sur la paroi S2 mais également sur la cellule de bois, un modèle de changement d’échelle permettant de passer de la paroi secondaire au tissu cellulaire du bois est en cours d’élaboration.

Remerciements

Les auteurs remercient l’Université Clermont Auvergne pour son soutien financier.

Références

Durabilité du collage du CLT et du lamellé-collé en chêne et en mixte peuplier-chêne en fonction de la pression de collage et du type de colle

PURBA Citra Yanto Ciki¹, POT Guillaume¹, COLLET Robert¹, CHAPLAIN Myriam²,
COUREAU Jean-Luc²

¹Arts et Métiers Institute of Technology, LaBoMaP, Rue Porte de Paris, 71250 Cluny, France
²Université de Bordeaux UMR 5295, Institut de Mécanique et d’Ingénierie (I2M), Bordeaux F-33000, France

purbacitrayantociki@gmail.com

Mots clefs : CLT ; lamellé-collé ; feuillus ; MUF ; PUR ; pression ; délamination ; cisaillement

Contexte et objectifs

Les fabricants de bois d'ingénierie, tels que le bois lamellé-croisé (CLT) et lamellé-collé (glulam), s'intéressent de plus en plus à la fabrication de produits en bois de feuillus. Ces deux produits ont un fort potentiel, en particulier pour les bois feuillus de faible valeur, pour permettre la construction de bâtiments à haute performance, à faible consommation d'énergie et à haut niveau de confort environnemental. Aujourd'hui, le CLT et le lamellé-collé sont presque exclusivement fabriqués à partir de planches de résineux, principalement de l'épicéa et du sapin. Plusieurs études ont été menées sur les propriétés de collage du chêne et ont montré que le bois lamellé-collé de chêne collé avec du polyuréthane (PUR) et de la mélamine-urée-formaldéhyde (MUF) se comporte bien lors des essais de cisaillement en conditions sèches (Luedtke et al. 2015, Konnerth et al. 2016, Aicher et al. 2018). Selon les études précédentes, il est clair que les panneaux de bois de feuillus, en particulier le CLT, dont la densité est supérieure à celle des résineux, ont peu de chances de satisfaire aux exigences de la norme européenne en matière de délamination, mais peuvent facilement dépasser la résistance minimale au cisaillement en condition sèches. À ce jour, il n'existe aucun rapport sur la durabilité du collage des CLT en chêne. La fabrication de bois d'ingénierie en mixant les essences de bois est également un sujet de recherche croissant (Castro and Paganini 2003, Aicher et al. 2016, Ma et al. 2021). L'avantage d'utiliser des essences mixtes a été démontré par Castro et Paganini (2003), où les poutres mixtes en bois lamellé-collé de peuplier et d'eucalyptus ont montré une plus grande efficacité structurelle en flexion que celles entièrement construites en peuplier ou en eucalyptus.

La documentation disponible aujourd'hui ne traite que du bois lamellé-collé en chêne : on ne sait toujours pas si le CLT en chêne a de bonnes performances ou non, ni ses performances lorsqu'il est mélangé avec d'autres essences. Ainsi, les objectifs de cette étude sont de fournir les premiers résultats sur la délamination et la résistance au cisaillement résiduelle du CLT en chêne et d'étudier l'influence du type de colle et de la pression de collage sur la délamination et la résistance au cisaillement résiduelle du CLT et du lamellé-collé en chêne et en mixte peuplier-chêne après le traitement prévu pour les essais de délamination. Dans cette étude, la résistance résiduelle est définie comme la résistance au cisaillement de l’échantillon après avoir subi un cycle d’humidification et de séchage qui a potentiellement induit une délamination.
Matériel et méthode

Des planches de chêne de dimensions 88 mm x 25 mm ainsi que des planches de peuplier de dimensions 88 mm x 23 mm provenant d'une forêt locale de Bourgogne, en France, ont été utilisées pour la production de panneaux CLT et lamellé-collé de 3 plis. Moins de 24 heures avant la fabrication, toutes les faces des planches de chêne ont été rabotées aux épaisseurs souhaitées de 19.5 mm pour les couches extérieures et de 23 mm pour la couche intérieure, avec une largeur de 86 mm. En revanche, l'épaisseur de la couche extérieure du panneau mixte peuplier-chêne a été réduite à 19.5 mm et celle de la couche intérieure à 21 mm.

Les panneaux CLT et lamellé-collé à 3 plis ont été assemblés selon deux compositions différentes. La première composition était constituée de chêne-chêne-chêne (nommé chêne) avec des dimensions nominales de 400mm x 400mm x 62mm et de chêne-peuplier-chêne (nommé mixte peuplier-chêne) avec des dimensions nominales de 400 mm x 400 mm x 60 mm.

La colle a été appliquée sur les faces de chaque lamelle à l’aide d’une spatule. Le grammage du PUR était d’environ 150 g/m² et, lorsqu’il était utilisé, le primaire représentait 20 g/m²; le grammage de la colle MUF étant d’environ 300 g/m². Le primaire a été appliqué sur chaque adhérent, suivi d’un temps ouvert de 30 min avant l’application du PUR. Le temps fermé de l’assemblage n’a pas dépassé 60 min pour le PUR, tandis qu’il était de 30 min pour le MUF. Pour étudier l’influence de la pression de collage sur la qualité du collage, une presse à vide (pression : 0.085 N/mm²) et une presse hydraulique (pression : 0.8 N/mm²) ont été utilisées. Après fabrication, les panneaux CLT ont été stockés pendant 30 jours à 20 °C et 37 % d'humidité relative. La qualité du collage du bois a ensuite été évaluée par le biais du test de délamination, de la mesure du pourcentage de rupture dans le bois (WFP) et des essais de cisaillement après le cycle de délamination.

Résultats et discussion

Les moyennes et l’écart-type pour le pourcentage de délamination et les différentes combinaisons de paramètres et de méthodes d'essai sont représentés sur la fig. 1.

Fig. 1 : Graphique en barres du pourcentage de délamination totale et de la délamination maximale d'une seule couche de colle avec la valeur limite requise par la norme EN 16351 (2015). La barre d'erreur représente l’écart-type. La ligne pointillée montre le seuil pour le CLT selon la norme EN 16351 (2015). La ligne pointillée indique le seuil pour le lamellé-collé selon la norme EN 14080 (2013).
Pour l’ensemble des échantillons, la moyenne de la longueur totale de délamination était de 23.18 %, tandis que la moyenne de WFP était de 69.89 %. La moyenne de la longueur totale de délamination pour les panneaux CLT en chêne (41.02 %) était de l’ordre de deux fois supérieure à celle trouvée dans les panneaux CLT mixtes peuplier-chêne (20.85 %). De plus, la longueur totale de délamination dans le bois lamellé-collé de chêne était cinq fois plus élevée que dans le bois lamellé-collé mixte de peuplier et de chêne (27.43 % VS 4.41 %). En accord avec la délamination, le WFP du CLT mixte peuplier-chêne (81.36 %) était deux fois plus élevé que celle du CLT en chêne (39.07 %). Le WFP du lamellé-collé mixte peuplier-chêne (92.93 %) était également supérieure à celle du lamellé-collé de chêne (65.02 %).

Fig. 2 : Boxplot de la résistance résiduelle au cisaillement après le cycle de délamination

Après le cycle de délamination, la résistance résiduelle au cisaillement des échantillons est présentée en Fig. 2. La résistance résiduelle moyenne de l’ensemble des éprouvettes en lamellé-collé était plus élevée (5.36 N/mm²) que celle des éprouvettes en CLT (1.81 N/mm²). La réalisation d’un essai de cisaillement en bloc après la phase de délamination n’est pas prévue par les normes. Les normes EN 16351 (2015) et EN 14080 (2013) proposent de réaliser ces essais sur les CLT en bois lamellé-collé sans aucun prétraitement. Comme référence, la norme pour la production de CLT avec du bois résineux (EN 16351 (2015)) fixe comme suffisante la valeur caractéristique de 1.25 N/mm² pour la résistance de collage des lignes de colle entre les couches collées transversalement, sans qu’aucune valeur ne soit inférieure à 1 N/mm² (essais réalisés sur des éprouvettes avec taux humidité autour de 12 %). Parmi toutes les éprouvettes CLT, 71.42 % ont une résistance au cisaillement supérieure à cette valeur de référence (80 % du CLT mixte peuplier-chêne et 62.85 % du CLT en chêne).

En tenant compte de toutes les configurations CLT, seul un panneau CLT (CMVP) a eu 100 % d’éprouvettes dépassant 1.25 N/mm². Cependant, les panneaux CMHM, CMHP et COHM avaient tous (sauf un spécimen) une résistance supérieure à la limite de 1.25 N/mm², ce qui est très encourageant si on tient compte du fait qu’il s’agit de résistances au cisaillement résiduelles. La norme EN 14080 (2013) exige pour le lamellé-collé une résistance au cisaillement d’au moins 6 N/mm², ou comprise entre 4 N/mm² et 6 N/mm² si le WFP est de 100 %. Parmi toutes les éprouvettes en lamellé-collé, 43.83 % avaient une résistance résiduelle au cisaillement supérieure à 6 N/mm², valeur requise par la norme EN 14080 (2013) pour l’essai de cisaillement en conditions sèches. Parmi tous les panneaux en lamellé-collé, le
GOVP présente le pourcentage le plus élevé de spécimens ayant une résistance au cisaillement résiduelle supérieure à 6 N/mm2 (77.78 %).

Conclusion et perspectives

La pression de collage et le type de colle semblent avoir une influence significative sur la qualité du collage du CLT ou du lamellé-collé, avec également des interactions significatives avec le type d'essence collée. L'utilisation d'une lamelle centrale en peuplier dans un panneau CLT ou un lamellé-collé 3 plis en chêne a présenté moins de délamination que les échantillons constitués exclusivement de chêne. Même si une pression de collage plus élevée semblait donner de meilleurs résultats, les CLT ou les lamellés-collés mixtes peuplier-chêne collés (avec du PUR et pressés sous vide (pression de collage de 0.085 N/mm2)) étaient très proches des exigences des normes. Seuls quelques échantillons présentaient une délamination trop importante. Par conséquent, il semble possible d'utiliser une presse à vide pour le collage de lamellé-collé ou de CLT lorsqu'une couche intermédiaire en peuplier est utilisée avec des couches extérieures en chêne. Il serait intéressant de confirmer toutes ces observations avec des CLT à 5 plis ou des lamellés-collés avec un nombre de plis supérieur. Des recherches supplémentaires sont nécessaires pour comprendre les propriétés mécaniques de ces produits hybrides.

Remerciements

La réalisation de cette étude a été rendue possible grâce au soutien financier de l'Institut Carnot des Arts, de la région Bourgogne-Franche-Comté et de l'ANR (projet TreeTrace ANR-17-CE10-0016-03). Les auteurs remercient l'association BCB (Bois Croisés de Bourgogne) et Ducerf S.A. pour la fourniture du bois.

Références

EN 14080 (2013). Timber structures - Glued laminated timber and glued solid timber - Requirements

Profil de contraintes dans les interfaces collés bois-bois

QUINTERO Christian¹, SAUVAT Nicolas¹, MILLEN Anne¹, DUBOIS Frédéric¹

¹Université de Limoges GC2D
christian.quintero-reyes@etu.unilim.fr

Mots clefs : Délamination, Diffusion hydrique, Contraintes hygromécaniques, Orthotropie, Viscoélasticité hygro activée, Bois lamellé collé

Contexte et objectifs

Les Bois d’Ingénierie, reconstitués par collage, sont indispensables aujourd’hui pour la réalisation de structures en bois, qu’elles soient courantes ou exceptionnelles comme les ponts ou les Immeubles de Grande Hauteur. Cependant, les phénomènes de délamination dans les interfaces subsistent, et peuvent être provoqués à la fois par le chargement mécanique et par les variations dimensionnelles différencielles dues aux variations hydriques, le tout dans un milieu caractérisé par un comportement dépendant du temps tel que la viscoélasticité.

Ce travail étudie par une approche numérique les effets couplés des variations d’humidité dans le bois, à travers les problématiques de diffusion (Varnier 2019), le caractère orthotrope du matériau en étudiant différentes orientations du repère d’orthotropie dans le plan transverse et le comportement viscoélastique caractérisant son comportement à long terme (Dubois 1997). Ces effets sont étudiés en termes de redistributions des contraintes dans les différentes pièces de bois mais également au niveau des plans de colle.

Le bois est identifié comme un matériau orthotrope, les effets de retrait/gonflement sont très dépendant de l’orientation du repère d’orthotropie, et ce, principalement dans le plan transverse (Passarini 2015). Cette orthotropie se caractérise par des propriétés viscoélastiques dépendante de la direction de sollicitation mais également par une anisotropie des phénomènes de diffusion. Ceci va expliquer en partie une distribution hydrique particulière dans le lamellé-collé pour lesquels les directions d’orthotropie différent d’une lamelle à l’autre (Gereke 2009).

Les variations locales d’humidité entraînent des variations de propriétés d’élasticité, mais également des propriétés de viscoélasticité par un phénomène nommé hygro-activiation (Guitard 1987), (Varnier 2019), (Dubois 1997).

Les phénomènes de diffusion sont caractérisés par des gradients hydriques temporels (Loi de Fick). Etant alimenté par l’environnement extérieur, les conditions d’exposition vont dépendre majoritairement des surfaces périmétriques exposées. Ces gradients, associés aux variations dimensionnelles orthotropes, vont générer une sollicitation mécanique hétérogène dans le bois et dans les plans de collage.
10èmes journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Ce travail propose ainsi d’étudier les effets, sur les contraintes à l’interface entre lamelles, de l’orientation relative de l’orthotropie des lamelles en considérant trois approches comportementales, à savoir, l’élasticité, la viscoélasticité et son hygro activation. Ce travail repose sur une approche modèle. Pour prendre en compte les effets de l’humidité sur des sections courantes, nous nous limiterons, dans ce travail, à une modélisation bidimensionnelle dans le plan Radial-Tangential.

Outil et méthode

La géométrie étudiée est composée de deux lamelles collées, considérées soit en quartier soit en dosse, en considérant une orthotropie orthogonale, Fig. 1.

![Fig. 1 : Géométrie à étudier](image)

Le modèle de diffusion mis en œuvre est un modèle thermo-couplé proposé par Varnier et al. (2020) (Varnier 2019). Le modèle employé est un modèle de transfert isotope, et ce, avec des valeurs identiques concernant la perméabilité à la vapeur pour les directions radiale et tangentielle (\(\delta_R = \delta_T = 14.74 \cdot 10^{-5} \frac{kg}{s m Pa} \)). Les plans de colles sont traités comme étant des barrières imperméables. Toutes les surfaces extérieures des lamelles sont des surfaces d’échange.

Les propriétés d’élasticité du Douglas sont empruntées des travaux de Guitard (1987), Tab.1, et ce, pour une humidité de référence de 12%.

Tab. 1 : Les comportement mécanique instantané des adhérents

<table>
<thead>
<tr>
<th>Teneur en eau</th>
<th>(E_R) MPa</th>
<th>(E_T) MPa</th>
<th>(G_{RT}) MPa</th>
<th>(v_{RT})</th>
<th>Rho kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>12%</td>
<td>1000</td>
<td>636</td>
<td>84</td>
<td>0.31</td>
<td>450</td>
</tr>
</tbody>
</table>

L’hygro-sensibilisation des propriétés d’élasticité sont également empruntées à Guitard (1987). Elle prend la forme d’une correction affine présentée ci-dessous (Eq 1), avec les coefficients de correction selon les directions présentées au Tab. 2 :

Tab. 2 : Correction de la teneur en eau sur les propriétés d’élasticité (Guitard 1987)

<table>
<thead>
<tr>
<th>Direction</th>
<th>(E_{ij}^w)</th>
<th>(E_{ij}^{1.29 %})</th>
<th>(G_{RT}^w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ij)</td>
<td>(E_{ij}^w)</td>
<td>(E_{ij}^{1.29 %})</td>
<td>(G_{RT}^w)</td>
</tr>
<tr>
<td>a</td>
<td>3 (\cdot) 10⁻²</td>
<td>3 (\cdot) 10⁻²</td>
<td>2 (\cdot) 10⁻²</td>
</tr>
</tbody>
</table>
Les valeurs retenus pour les coefficients de retrait / gonflement sont présentés au Tab. 3. Les variations d’humidité induisent des effets de retrait gonflement. Ces effets sont proportionnels aux variations d’humidité.

Tab. 3 : Coefficients de retrait gonflement du Douglas

<table>
<thead>
<tr>
<th>Essence de bois</th>
<th>α_T (%/%)</th>
<th>α_R (%/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas</td>
<td>0,38</td>
<td>0,19</td>
</tr>
</tbody>
</table>

La loi de comportement hygromécanique est donnée par la relation suivante :

$$\varepsilon_{ij} = S_{ijkl} \sigma_{kl} + \alpha_{ij} \Delta \omega$$ \hspace{2cm} (2)

La loi de comportement viscoélastique tridimensionnelle se traduit par le produit de convolution :

$$\varepsilon_{ij}(t) = \sum_{k,l} I_{ijkl} \otimes \frac{D \sigma_{kl}}{D \tau}$$ \hspace{2cm} (3)

ε_{ij} et σ_{kl} représentent les composant du tenseur de déformations et de contrainte, I_{ijkl} les composantes du tenseur fluage. Chacune de ses composantes représente une fonction de fluage.

$$I_{ijkl}(t) = \frac{1}{k_{ijkl}} + \sum_{m=1}^{M} \frac{1}{k_{ijkl}^m} \cdot \left(1 - e^{-\lambda_{ijkl}^m t}\right)$$ \hspace{2cm} (4)

L’outil propose une modification équivalente du temps d’ouverture des amortisseurs, capable de recréer une diminution de viscosité en cas d’humidification. Ainsi, les temps caractéristiques d’ouverture des amortisseurs se détermine de la façon suivante.

$$\tau = \frac{\Delta t_n}{\alpha_w} = \frac{\Delta t_n}{e^{(\lambda \alpha + \lambda w + \lambda w^2)}}$$ \hspace{2cm} (4)

Premiers résultats

L’évolution de la teneur en eau est un processus avec une cinétique lente, illustrée dans la fig.2 (a). Les variations dimensionnelles hétérogènes associées vont créer un champ des contraintes.

Fig. 2 : (a) Évolution de la diffusion (b) Contraintes de cisaillement dans l’interface

Dans la fig2 (b), nous pouvons remarquer les effets de l’adoucissement du matériau en fonction de la teneur en eau.
10es journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

Dans la fig 3, nous pouvons remarquer l'impact de l’adoucissement dans le matériau. Et la diminution des contraintes dans l’extrémité. Lorsque la diffusion est lente, la viscoélasticité peut influencer les redistributions de contraintes. Les phénomènes de viscoélasticité sont aussi fortement liés à la teneur en eau.

Conclusion et perspectives

Cette étude permet de comprendre la redistribution des contraintes lors d’une humidification. Les effets de l’adoucissement sont importants et permettent de décharger l’interface.

Les effets de l’hygroactivation vont impacter au comportement final de la structure.

L’objectif suivant est de compléter cette approche avec un modèle de délamination basé sur la mécanique de l’endommagement de l’interface (Gornet, et al 2000).

Remerciements

Le financement de ce doctorat est assuré par une bourse de la région Nouvelle Aquitaine.

Références

Gereke, Thomas. 2009. « Moisture-Induced Stresses in Cross-Laminated Wood Panels ».

Etude préliminaire sur l’identification des espèces de bois d’ébène de Madagascar à partir des Spectres Proche InfraRouge des microcarottes de bois

RAOBELEINA Andry Clarel1, RAVOAHANGILALAO Nantenaina Maminirina1, CHAIX Gilles2,3, RAZAFAHMJATRA ANDRIAMBELO RADONIRINA3, RASOAMANANA Lalaina Patricia1, RAMANANANTOANDRO Tahiana3

1Université d’Antananarivo, Ecole Supérieure des Sciences Agronomiques, Antananarivo 101, Madagascar
2CIRAD – UMR AGAP Institut, Montpellier, France
3AGAP Institut, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France

andryclarel@gmail.com

Mots clés : Diospyros ; Ébène ; Spectroscopie Proche InfraRouge ; MicroNIR Viavi 1700 ; Support Vector Machine ; Madagascar ; Microcarottes de bois

Contexte et objectifs

Matériels et méthodes

Un total de 50 carottes de bois (un carotte par arbre, Fig. 1) appartenant aux trois espèces de *Diospyros* (Tab. 1) a été collecté dans la région Diana, localisée dans la partie Nord de Madagascar. L’identification des échantillons a été effectuée par des taxonomistes de la Missouri Botanical Garden (MBG) de Madagascar et de la Musée National d’Histoire.
Naturelle (MNHN) de France. La surface des carottes a été rafraîchie en utilisant des papiers abrasifs (P120 et P180).

Les carottes ont été ensuite conditionnées à 12% d’humidité en utilisant une enceinte climatique réglée à une température de 20°C et une humidité relative de 65%. Six replications spectrales ont été mesurés sur la partie duramen de chaque carotte, depuis la moelle vers l’écorce, en utilisant un spectromètre Viavi MicroNir 1700 (gamme spectrale 900 à 1700 nm, 125 longueurs d’onde). Au total, 300 spectres ont été mesurés sur l’ensemble des 50 carottes de bois (Tab. 1).

L’ensemble des données spectrales a été partagé aléatoirement en un jeu de spectres d’étalonnage (3/4) et un jeu de spectres de validation (1/4). Un modèle de discrimination a ensuite été établi à partir du jeu de données d’étalonnage en utilisant la méthode de classification supervisée Support Vector Machine (SVM). Le meilleur modèle a ensuite été appliqué pour prédire les classes de références des spectres du jeu de validation. La performance du modèle a été évaluée par le pourcentage de spectres bien classés issu de la validation indépendante.

Tab. 1 : Nombre de carottes/ spectres pour les trois espèces de Diospyros

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Jeux de données d’entraînement</th>
<th>Jeux de données d’étalonnage</th>
<th>Jeux de données de validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. analamarensis</td>
<td>17/102</td>
<td>13/78</td>
<td>4/24</td>
</tr>
<tr>
<td>D. chitoniiophora</td>
<td>18/108</td>
<td>14/84</td>
<td>4/24</td>
</tr>
</tbody>
</table>
Résultats et discussions

La Fig. 2 représente les coordonnées factorielles des spectres prétraités avec un lissage suivi de la dérivation seconde de Savitzky-Golay (largeur de fenêtre W=15 points) dans le plan formé par les deux premières composantes principales (CP1=75,2% ; CP2=13,2%) pour les trois espèces de *Diospyros*. Il n’y a pas de groupement distinct de spectres selon les espèces dans le plan CP1-CP2 issu des résultats de l’ACP (Fig. 2).

Le modèle de discrimination issu de la classification supervisée par la méthode SVM permet de séparer les trois espèces, avec un pourcentage global de spectres bien classés en validation indépendante de 94,4% (Tab. 2). Cette nette séparation des trois espèces pourrait s’expliquer par leur empreinte spectrale spécifique à la chimie de leur bois et démontrerait que leurs situations taxonomiques est stable. En effet parmi les espèces d’ébènes de Madagascar, *D. analamerensis*, *D. chitoniophora* et *D. clusiifolia* sont déjà bien décrites au niveau taxonomie (Perrier de la Bathie, 1952 ; Schatz et al., 2021). Les trois espèces de *Diospyros* se distinguent également entre elles sur la base des spectres de la partie duramen de leurs bois, avec un succès d’identification de 100%, 96% et 88% (Tab. 2), respectivement pour *D. analamerensis*, *D. chitoniophora* et *D. clusiifolia*. En terme d’espèce et non de spectres, hypothèse que si 4 ou plus des 6 spectres sont bien classés, l’espèce prédite est la bonne. Seulement une carotte de *D. clusiifolia* (RIR3198) est mal classée en *D. analamerensis* dont trois des replicats spectraux sont malprédits.

Tab. 2 : Matrice de confusion en validation indépendante pour le modèle de discrimination SVM

<table>
<thead>
<tr>
<th>Classes de références</th>
<th>D. analamerensis</th>
<th>D. chitoniophora</th>
<th>D. clusiifolia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes prédites</td>
<td>24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>% spectres bien classés</td>
<td>100</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94,4</td>
</tr>
</tbody>
</table>
Fig. 2 : Carte factorielle issue de l’ACP à partir des spectres prétraités avec SG2 (W=15)

Conclusion et perspectives

Les espèces *D. analamerensis*, *D. chitoniphora* et *D. clusiifolia* présentent des configurations spectrales proches sur la base des résultats de l’Analyse en Composante Principale à partir des spectres PIR de la partie duramen de leurs bois dans la région 950 nm – 1650 nm. Une séparation plus évidente des trois espèces a pourtant été observée issue d’une classification supervisée en utilisant la méthode *Support Vector Machine*. Les résultats issus de la présente étude, notamment pour le cas des spectres qui ont été mal classées par le modèle devront être comparés avec ceux des autres méthodes d’identification qui sont utilisées à Madagascar dont l’anatomie du bois et la méthode moléculaire afin de vérifier la cohérence des résultats. Le réétalonnage des modèles sera également effectué ultérieurement pour rajouter davantage d’espèces dans le lot d’échantillons d’étalonnage dans une finalité d’inclure toutes les essences d’êbènes qui sont potentiellement exploitables.

Remerciements

Références

Evaluation des potentialités d’un spectromètre portatif à faible coût sur la discrimination de 3 espèces de *Dalbergia* et 3 espèces de *Diospyros* de Madagascar : essais sur des échantillons non stabilisés.

RASOAMANANA Lalaina Patricia¹,⁴, CHAIX Gilles²,³,⁴, RANDRIAMBININTSOA Tiaina¹, RAOBELINA Andry Clarel¹, TOMAZELO Filho Mario⁴, RAZAFIMAHATRATRA Andriambelo Radonirina¹, RAMANANANTOANDRO Tahiana¹

¹Université d’Antananarivo, Ecole Supérieure des Sciences Agronomiques, Département Eaux et Forêts, Antananarivo 101, Madagascar
²CIRAD - UMR AGAP Institut, Montpellier, France
³UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
⁴ESALQ-USP, Wood Anatomy & Tree-Ring Lab, Piracicaba, Brazil

patriciarasoamanana@gmail.com

Mots clefs : Spectrométrie proche infrarouge, discrimination, spectromètre portatif, humidité des échantillons, *Dalbergia*, *Diospyros*

Contexte et objectif

Les espèces de *Dalbergia* et de *Diospyros* présentes à Madagascar se distinguent les unes des autres par leurs caractéristiques de leurs fleurs et de leurs fruits mais même les scientifiques experts sont incapables de différencier les espèces lorsque ces structures reproductives sont absentes. Les experts botanistes et scientifiques du bois travaillant sur ces questions se heurtent à un manque de ressources humaines et financières, ainsi que d’équipement et matériels essentiels alors qu’ils en ont besoin pour résoudre les questions taxonomiques des espèces de *Dalbergia* et de *Diospyros*. Par ailleurs, la majorité des méthodes usuelles d’identification des espèces à partir du bois, sans accès aux organes reproductifs (cas des grumes de bois saisis), sont effectuées au laboratoire, souvent lentes et nécessitant une expertise particulière. Le développement d’outil d’aide en routine d’identification sur terrain des *Dalbergia* et *Diospyros* constitue alors un enjeu important dans la gestion durable de ces bois précieux. Parmi les méthodes utilisées par les scientifiques malgaches et leurs partenaires internationaux figure la spectroscopie proche infrarouge (Mason et al., 2016). Elle offre l’avantage de la rapidité d’analyse avec un coût analytique faible par rapport aux méthodes d’analyses courantes (Arison, 2015). Cependant, l’avancée de la technologie SPIR dans l'identification des bois précieux est encore à un stade précoce à Madagascar. Des études plus approfondies nécessitent d’être menées sur l’utilisation de la méthode pour l’identification sur terrain (Bergo et al., 2016) et sur les méthodes chimiométriques d’analyses. Plusieurs paramètres physiques non contrôlables (température, humidité de bois, état de surface, etc) limitent la performance de l’outil pour son utilisation en dehors du laboratoire (Hein et al., 2009). L’intérêt de cette étude, est de tester et travailler sur des échantillons de bois dans différentes conditions et états. Elle a pour but de chercher à vulgariser la méthode, par l’utilisation d’un spectromètre NIR portatif à faible coût, adapté au contexte de Madagascar, dont l’usage pourrait être avantageux dans le contexte de gestion durable de ces bois précieux.
Matériels et méthode

Appareil de mesure

Pour cette étude, un spectromètre portatif DLP® NIRscan™ Nano(Texas instruments Inc., Texas, USA) a été utilisé. Sa région spectrale couvre 900 à 1700 nm et sa résolution est de 10nm. Son prix est 20 fois moins cher par rapport au spectromètre MicroNIR Viavi 1700 (Viavi Solution–Milpitas, CA, USA) l’un des références en matière de spectromètre ultra portable, à disposition au laboratoire et dont l’efficacité a déjà été démontrée (Snel et al., 2018 ; Raobelina, 2018 ; …).

Échantillons d’étude

L’étude s’est focalisée sur des microcarottes de 3 espèces de Dalbergia : Dalbergia occulta, Dalbergia madagascariensis et Dalbergia baronii ; de 3 espèces de Diospyros : Diospyros analamerensis, Diospyros chitoniophora et Diospyros toxicaria. Le choix de ces espèces se justifie par leur appartenance aux espèces qui présentent un intérêt commercial et le nombre élevé d’échantillons dans la collection de microcarottes disponibles.

Tab. 1 : Répartition du nombre d’échantillons

<table>
<thead>
<tr>
<th>Genre</th>
<th>Espèces</th>
<th>Nombre échantillons</th>
<th>Ech. d’étalonnage</th>
<th>Ech. de validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da.</td>
<td>occulta</td>
<td>47</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>madagascariensis</td>
<td>36</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>baronii</td>
<td>5</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>Di.</td>
<td>chitoniophora</td>
<td>64</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>analamerensis</td>
<td>65</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>toxicaria</td>
<td>30</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

Méthodologie

Résultats et Discussions

Pour la discrimination des espèces de Dalbergia (Da.), c’était la combinaison des prêtraitements SNV et Savitzky Golay dérivée première qui a donné le meilleur modèle avec
une erreur de prédiction de 18%, soit des échantillons bien prédits à 82%. Les détails des résultats de la discrimination sont résumés dans le tableau 2.

Pour la discrimination des espèces de *Diospyros* (Di.), c’est le prétraitement SNV qui a donné le meilleur modèle avec une erreur de prédiction de 19.6%, soit des échantillons bien prédits de 80.3%. Les détails de la discrimination sont résumés dans le tableau 3.

Tab. 2 : Prédiction des espèces de *Dalbergia* en validation indépendante

<table>
<thead>
<tr>
<th>Classes réelles</th>
<th>Classes prédites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Da. baronii</td>
<td>Da. occulta</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Di. analamerensis</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Da. occulta</td>
<td>Da. madagascariensis</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Les erreurs de prédiction peuvent s’expliquer par l’influence de la variabilité de l’humidité des échantillons qui ont été pris sous différentes conditions. Une étude de Randriambinintsoa (2021) a montré qu’un modèle établi avec 12% d’humidité présentait des limites pour la discrimination des mêmes échantillons tests mais stabilisés à 20% d’humidité. Il a ainsi démontré que l’application de certaines corrections ont apporté des améliorations en termes de performances pour discriminer les spectres issus des échantillons stabilisés à 20% d’humidité. Une autre étude effectuée par Daniele *et al.* en 2021 a aussi démontré l’efficacité de la correction de la variation de l’humidité par la méthode EPO sur la discrimination des bois brésiliens.

Conclusions et perspectives

Le spectromètre portatif NanoNIR, en dépit de son faible coût a permis d’avoir un modèle avec plus de 80% d’échantillons bien prédits tant pour les espèces de *Dalbergia* que pour les espèces de *Diospyros*. Afin d’améliorer les modèles de discrimination, les perspectives pour cette étude seront de pouvoir travailler sur plus d’espèces. Comme la collecte des échantillons au niveau du projet et du consortium a déjà permis une collection importante de microcarottes de bois (143 microcarottes pour les zones cibles du projet et près de 1000 carottes au niveau du laboratoire), les données qui seront traitées seront enrichies et plus d’espèces seront considérées. Enfin comme le but principal de l’étude est de pouvoir directement utiliser la méthode de discrimination des espèces sur terrain, l’influence de la grandeur externe telle que l’humidité sur le modèle de discrimination sera considéré et les méthodes de correction seront appliquées sur les bases de données.
Remerciements

Vifs remerciements aux 3 équipes de recherche au sein desquelles se déroulent cette étude : - Laboratoire des Sciences du bois (Département des Eaux et Forêts, Ecole Supérieure des Sciences Agronomiques – Université d’Antananarivo-Madagascar), - Plateforme d'histocytologie et d'imagerie cellulaire végétale PHIV (UMR Agap et BPMP), Plateau de phénotypage biochimique PPB (UMR Agap), Montpellier, France. La thèse de doctorat de L.P. Rasoamanana est financée par le projet FID2D (Fied Identification of Diospyros and Dalbergia) qui est financé l’USAID (United States Agency for International Development) à travers le WRI (World resources Institute) et le projet Hay Tao, et par l’OWSD (Organization for Women in Science for the Developing World). Cette étude est rendue possible grâce au soutien du peuple américain par l'intermédiaire de l’USAID et ne reflètent pas nécessairement les vues de l'USAID ou du gouvernement des États-Unis.

Bibliographie

- Daniele C. G. C. Kunze1, Tereza C. M. Pastore, Hugo S. Rocha, Priscila Veras Dos Anjos Lopes1, Rafaela Dornelas Vieira1, Vera T. R. Coradin, and Jez W. B. Braga, (2021), Correction of the moisture variation in wood NIR spectra for species identification using EPO and soft PLS2-DA
- Raobelina, A.C. (2018), Utilisation de la spectroscopie proche dans la discrimination de quelques essences de bois appartenant aux genres Dalbergia et Diospyros à Madagascar, Mémoire de fin d'études M2. ESSA-Forêts de l'Université d'Antananarivo. 52 pages
Development of protein-based adhesives for wood composite materials
RAYDAN Nidal Del Valle¹, CHARRIER Bertrand¹, ROBLES Eduardo¹

ndvraydan@univ-pau.fr

Mots clefs: bio-based adhesives; plant proteins; animal proteins; adhesion theories; wood adhesives

Context and Objectives
Wood bonding has been practiced for many ages. The first adhesives used for the wood industry were made from bio-sources such as collagen, blood, casein, fish, starch, and other derivatives. However, the production of bioadhesives dropped dramatically due to the boom of products made from fossil sources, such as phenol-formaldehyde (PF), urea-formaldehyde (UF), melamine-formaldehyde (MF) and polymeric diphenylmethane diisocyanate (pMDI). These synthetic adhesives replaced renewable ones as a result of their superior strength and resistance to moisture. Formaldehyde has been subjected to strong regulations, which will eventually lead to banning wood-based panels from the European market due to its harmful emissions. In this perspective, concerns on environmental footprints and toxicity of these adhesive formulations made researchers investigate the utilization of bio-based materials to formulate wood adhesives. Protein-based adhesives have been used for many ages. They are a biodegradable alternative to synthetic adhesives due to their advantages, such as lower emissions of VOCs, renewable sourcing, and reduced environmental footprint. The present work is a summary of the recent development of bio-based adhesives and proteins for the formulation of new wood adhesives.

Current Bio-based Wood Adhesives
There are several reports of different biomass resources for the production of bio-based adhesives, such as lignin, starch, tannins, vegetable oils, and proteins. On the other hand, within bio-based adhesives, protein-based ones are the most abundant class of macromolecules, they function as the main organic building blocks in living organisms. For this reason, there has been an increasing interest in using proteins from both plant and animal sources for glues and adhesives.

Mechanics behind Bioadhesive Development
Mechanism of adhesion
Adhesion mechanisms have been investigated to be reliant on the surface characteristics of the materials. In general, it is approved that there are three primary mechanisms of adhesion: I) mechanical interlocking, II) physical bonding, and III) chemical bonding [1]. All these mechanisms are responsible for bonding, and normally, one of them plays a dominant role.

Wood bonding and Adhesion theories
The most recent state of the art allows to class the theories or mechanisms of adhesion into seven models or fields. These are mechanical interlocking, electronic or electrostatic theory, diffusion theory, adsorption (thermodynamic) or wetting theory, chemical (covalent) bonding theory, theory of weak boundary layers, and acid-base theory [2], [3]. The last four are based on adsorption/surface reaction. Usually, each phenomenon contributes to the whole strength of adhesion. In the case of wood bonding, the main adhesion mechanism includes interfacial secondary interactions such as Vander Waal's forces, dipole-dipole interactions, and H-bonding [4], [5]. To understand better the difference between theories and mechanisms of adhesion, the possible mechanisms underlying each of these theories is schematically represented in Table 1.

Table 1: Adhesion theories and possible mechanisms.

<table>
<thead>
<tr>
<th>Theory</th>
<th>Mechanism</th>
<th>Strength of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical interlock</td>
<td>Wetting</td>
<td>Variable</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>Ion-dipole interactions</td>
<td>Strong</td>
</tr>
<tr>
<td>Diffusion</td>
<td>Inter-diffusion</td>
<td>Variable</td>
</tr>
<tr>
<td>Adsorption/wettability</td>
<td>Vander waals, dipole-dipole</td>
<td>Weak, moderate to strong</td>
</tr>
<tr>
<td>Chemical bonding</td>
<td>Covalent bond</td>
<td>Very strong</td>
</tr>
<tr>
<td>Weak boundary layer</td>
<td>Defects at interface</td>
<td>Variable</td>
</tr>
<tr>
<td>Acid-base</td>
<td>H-bonding, dipole-dipole or</td>
<td>Moderate to strong; very strong</td>
</tr>
<tr>
<td></td>
<td>ionic interactions</td>
<td></td>
</tr>
</tbody>
</table>

Wood adhesion considerations

The adhesion process involves numerous factors that determine how successfully an adhesive bond will perform in service. The physical and chemical conditions of the adherent’s surface are crucial to adequate joint performance. Wood surfaces should be flat, smooth, and free of machine’s marks and other surface irregularities, including burnishes, oils, dirt, planer skips, torn and chipped grain. Moreover, a liquid based adhesive should be spread readily to join two wood adherents with maximum power ensuring full contact between the two surfaces. In addition to this, the bond ability of wood is influenced not only by the properties of the adherent’s surface but also by wood’s physical properties, including density, moisture content, porosity, and dimensional movement.

Protein-based adhesives for wood composites

Table 2 presents an overview of the most protein bio-based adhesives that can be used in the wood industry and the different advantages and disadvantages regarding their performance as wood adhesives.
Table 2: Advantages and disadvantages of various protein-based wood adhesives

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Wheat Gluten | • High amount of hydrophobic amino-acids
• Abundant | • Water-insoluble
• Highly viscous due to swelling of starch by water absorption and release of amylose chains |
| Soy meal | • Good strength under drying conditions
• Good thermal resistance | • Limited water resistance
• Poor wettability |
| Zein | • Hydrophobic protein
• Water-resistant
• A lot of chemical modifications is unneeded | • Yellow color due to xanthophylls, carotenoids, and other color pigments present in corn
• Relatively high cost of extraction due to organic solvents needed |
| Casein | • Relatively safe to work with
• Moderate resistance to water | • Eight gallons of skim milk are required to make one pound of dry casein |
| Keratin | • Is the most abundant among animal sources
• Hydrophobic
• Fungal decay protection | • Non-homogeneous composition
• Poor solubility
• Disinfecting process is needed to apply them |
| Blood | • Very rapid setting with heat
• Moderate resistance to microorganisms | • Produce dark glue lines
• Blood drying is an energy-intensive process |
| Collagen | • Globular in nature
• Highly non-polar | • Needs processing to separate the collagen from other materials |
Conclusion

Protein based-adhesives offer a sustainable solution to indoor air quality and formaldehyde concerns. All adhesive raw materials discussed above are renewable, available, and can substantially reduce emissions (formaldehyde and VOCs) when substituting synthetic adhesives currently used in the wood industry. On the contrary, protein-based adhesives have certain drawbacks that hinder their usage industrially, mainly poor water resistance for hydroxyl group-rich materials and viscosity for long molecule chain polymers. Developing an environmentally friendly wood adhesive system that is competitive with urea-formaldehyde and phenol-formaldehyde resins is feasible to achieve by a combination of technologies, such as protein denaturation, followed by chemical modification of denatured protein and chemical crosslinking. However, challenges are yet to be addressed regarding the costly chemical modifications, which hopefully can be regulated by incorporating hydrophobic proteins for better water resistance performance.

Appui dans la délimitation taxonomique d’espèces de bois précieux de Madagascar à travers l’analyse quantitative des extractibles et des phénols totaux du bois, cas de Dalbergia mollis Bosser & R.Rabev.

RAZAFIMAHATRATRA Andriambelo Radonirina¹, RAOBELINA Andry Clarel¹, RAMANANANTOANDRO Tahiana², BELLONCLE Christophe³, CHAIX Gilles ³,4,5

¹Université d’Antananarivo, Ecole Supérieure des Sciences Agronomiques, Antananarivo 101, Madagascar
²Ecole Supérieure du Bois, Nantes, France
³CIRAD - UMR AGAP, Montpellier, France
⁴AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
⁵ESALQ-USP, Wood Anatomy & Tree-Ring Lab, Piracicaba, Brazil

andriambelo.radonirina@gmail.com

Mots clés : Variabilité ; extractibles ; phénols ; duramen ; délimitation taxonomique ; Dalbergia mollis ; Madagascar

Contexte et objectifs

Parmi les problèmes rencontrés dans la traçabilité des espèces de bois précieux de Madagascar, dont les espèces de Dalbergia (palissandre et bois de rose), figure l’identification des espèces. Les méthodes d’identification pour certaines de ces espèces ne sont pas encore très bien mises en place, principalement parce que la délimitation taxonomique de ces espèces n’est pas encore bien définie. Donc, les clés d’identification de ces espèces par la botanique, l’anatomie du bois ou par d’autres méthodes ne sont pas encore bien établies. Jusqu’en 2011, 48 espèces de Dalbergia ont été recensées à Madagascar (Ballet et al., 2011). Et jusqu’en octobre 2021, 51 espèces bien acceptées et publiées ont été recensées, mais le nombre total d’espèces de Dalbergia est estimé à 91 dans l’île en cette même période, dont 90 espèces endémiques et une espèce autochtone non endémique (www.tropicos.org). Ainsi, des travaux additionnels sur la taxonomie de ce genre sont toujours en cours si bien que ce nombre pourrait encore augmenter.

Dalbergia mollis Bosser & R.Rabev. figure parmi les espèces de grands arbres, atteignant plus de 30 m de hauteur et 1 m de DHP, donc bien exploitable. C’est une espèce à très large distribution, du nord au sud de Madagascar et dont les propriétés phénotypiques peuvent être très variées. Dans cette espèce figuraient Dalbergia mollis var. mollis et Dalbergia mollis var. menabeensis (R.Vig.) Bosser & R.Rabev. Des analyses récentes des caractéristiques botaniques de Dalbergia mollis ont montré que les caractéristiques à l’intérieur de l’espèce sont très variables (Wilding et al., 2021). Les analyses phyléongénomiques ont aussi montré que les 2 variétés appartenant à Dalbergia mollis ne forment pas un groupe monophylétique (Crameri, 2020), et que ces 2 variétés ne devraient pas dériver d’une même espèce. L’espèce vient d’être récemment divisée en deux (2) différentes espèces (Wilding et al., 2021). L’objectif de ce travail est d’analyser d’autres caractéristiques phénotypiques de Dalbergia mollis, que sont les compostans chimiques du bois, afin d’appuyer les résultats de la variabilité des caractéristiques morphologiques de l’espèce et de la génétique, et ainsi confirmer la nécessité d’avoir divisé l’espèce en différentes espèces.
Matériel et méthode

Les paramètres de composition chimique du bois analysés sont le taux d’extractibles totaux et le taux de phénols totaux. Ces taux ont été prédits en utilisant des modèles de prédiction SPIR (Spectroscopie Proche Infragouge) multispécifiques et multisites basés sur 7 espèces de bois ordinaires et 11 espèces de bois précieux malgaches (Razafimahatratra, 2021). Pour les valeurs de référence utilisées pour étalonner les modèles, le taux d’extractibles (exprimés en pourcentage de matière sèche) a été analysé selon la norme TAPPI T 204 om-88. Les extractions ont été effectuées au soxhlet pendant 6h en utilisant des cartouches d’extraction en cellulose et avec un mélange de solvant organique 1:1 composé de toluène et d’éthanol pur. Et le taux de phénols totaux (exprimé en milligramme d’équivalent acide gallique par gramme de matière sèche) a été analysé par la méthode de Folin-Ciocalteu (Singleton et Rossi 1965) en utilisant une courbe d’étalonnage d’acide gallique. Les spectres ont été mesurés sur le duramen des bois stabilisés à 12% d’humidité, en utilisant un spectromètre portatif microNIR 1700 de VIAVI Solutions. Les modèles d’étalonnage se basent dans la gamme spectrale 950-1650 nm avec une résolution de 6,2 nm. Les modèles utilisés ont été établis par la méthode PLS ou Partial Least Square (Geladi et Kowalski, 1986), et testés en validation croisée répétée. 11 types de prétraitement de spectre ont été testés et c’est le meilleur prétraitement qui a été utilisé. Les modèles de prédiction utilisés sont considérés comme bons, avec un RMSECV de 1,79 pour le taux d’extractibles et 2,82 pour le taux de phénols. Les compositions chimiques de l’espèce analysées ont aussi été comparées avec celles de 36 autres morpho-espèces de Dalbergia (Fig. 1). Dans cette étude, les deux anciennes variétés analysées sont Dalbergia mollis var. menabeensis, et Dalbergia mollis var. mollis. Cette dernière peut être désignée uniquement par Dalbergia mollis.

Résultats et discussion

Le taux d’extractibles et de phénols totaux du duramen varient significativement (α=0,1%) pour les 38 morpho-espèces de Dalbergia analysées. Les taux d’extractibles et de phénols

Fig. 1 : Taux d’extractibles et de phénols totaux du duramen pour 38 morpho-espèces (en valeurs relatives), ordonnés par ordre croissant du taux d’extractibles.
pour ces 38 morpho-espèces sont présentés dans fig. 1, les valeurs des paramètres pour chaque espèce sont exprimées en valeurs relatives par rapport à la valeur du paramètre de l’espèce avec la plus forte valeur.

Pour les 2 anciennes variétés analysées, le taux d'extractibles de Dalbergia mollis var. menabeensis représente près de 84% de celui de Dalbergia mollis, et pour le taux de phénols totaux, c'est 87%. Comparé à 36 autres morpho-espèces de Dalbergia, le taux d'extractibles de Dalbergia mollis est très proche de celui de Dalbergia obtusa Lecomte et Dalbergia urschii Bosser & R. Rabev., tandis que celui de Dalbergia mollis var. menabeensis est plus proche de Dalbergia suaresensis Baill. Les valeurs des propriétés des 2 variétés sont alors assez éloignées.

L’ancienne espèce Dalbergia mollis vient d’être divisée en 2 espèces actuellement, dont Dalbergia bemarivensis Phillipson & N. Wilding (se référant à l’ancien Dalbergia mollis Bosser & R. Rabev. et Dalbergia mollis var. mollis) et Dalbergia chermezonii R. Vig. (se référant à Dalbergia mollis var. menabeensis (R. Vig.) Bosser & R. Rabev.) (Wilding et al., 2021). Ainsi, comparés aux autres morpho-espèces, il y a vraiment un écart entre les taux d’extractibles de Dalbergia bemarivensis et de Dalbergia chermezonii, de même pour le taux de phénols. Et leurs aires naturelles de répartition sont bien différentes, elles ne se chevauchent pas. En effet, Dalbergia bemarivensis se situe dans la partie nord-ouest de Madagascar tandis que Dalbergia chermezonii se trouve dans la partie sud et sud-ouest de l’île.

Conclusion et perspectives

Ces analyses chimiques préliminaires montrent ainsi une différence de composition chimique entre les 2 nouvelles espèces Dalbergia bemarivensis et Dalbergia chermezonii. Elles renforcent les résultats sur les analyses morphologiques et génétiques des 2 espèces. Il faut d’abord bien établir la délimitation taxonomique des espèces afin d’établir des bonnes clés d’identification fiables pour chaque espèce. La mise en place de ces méthodes d’identification figure parmi les points à résoudre pour la gestion durable de ces espèces de bois précieux qui sont inscrites dans l’annexe de la CITES, et dont la plupart se trouvent dans la liste rouge de l’UICN. Et l’établissement de ces méthodes doit être effectué avant de s’engager dans la valorisation de ces espèces. Les analyses sur les caractéristiques anatomiques de leur bois sont en cours actuellement afin de confirmer ou non la différence des caractéristiques phénotypiques et pour mettre en place des clés d’identification par l’anatomie du bois. Des récoltes d’échantillons supplémentaires sont aussi en cours pour les 2 nouvelles espèces afin de disposer d’une base de référence plus large et effectuer des analyses plus poussées. Les prochains travaux consisteront à améliorer l’identification botanique des échantillons de chaque espèce, à effectuer des analyses qualitatives de la composition chimique des extractibles du bois des 2 espèces étudiées et à améliorer les modèles de prédiction SPIR des propriétés du bois mis en place.

Remerciements

Les auteurs adressent leurs remerciements à la Délégation de l’Union Européenne à Madagascar (DUEM) qui finance le projet G3D (Gestion Durable des Bois Précieux Dalbergia et Diospyros de Madagascar) à travers lequel les échantillons de bois ont été collectés. Ils remercient également le Consortium sur l’Identification des Bois Précieux de Madagascar formé par le Département Ecologie et Biologie Végétales (DBEV) et l’Ecole Supérieure des Sciences Agronomiques, Département Forêts (ESSA Forêts) de l’Université...
d’Antananarivo, ainsi que Missouri Botanical Garden (MBG) à Madagascar pour la collecte et l’identification botanique des échantillons.

Références

Crameri S. (2020) Phylogenomics, Species Discovery and Integrative Taxonomy in *Dalbergia* (Fabaceae) Precious Woods from Madagascar. Doctoral dissertation [Diss. ETH No. 27241]. ETH, Zurich

Modélisation de l’endommagement d’un matériau hétérogène biossourcé : application au bois massif

REBHI Amal1, COUREAU Jean-Luc1, CHAPLAIN Myriam1, GRAZIDE Cécile2

1Institut de Mécanique et d’Ingénierie (I2M), Département Environnement et Génie Civil (GCE), Université de Bordeaux, Talence, France
2 Laboratoire de matériaux composites pour la construction (LMC²), Université Claude Bernard Lyon 1, Villeurbanne, France

amal.rebhi@u-bordeaux.fr

Mots clés : modélisation numérique; méthode des éléments finis; mécanique d’endommagement; rupture; bois; quasi-fragile; ductile.

Contexte et objectifs

Le bois est un matériau fortement anisotrope difficile à modéliser, ses propriétés sont très variables et sont sensibles aux conditions environnementales et de chargement. Aussi, le comportement mécanique à la rupture de ce matériau diffère selon le mode de sollicitation et la direction d’orthotropie, il a un comportement quasi-fragile en traction et en cisaillement et un comportement ductile en compression. La majorité des approches existant pour étudier les comportements à la rupture du bois, sont principalement basées sur des critères de rupture associés au comportement élastique, (Baño et al. 2011), (Grazide et al. 2018), (Lukacevic et al. 2019) … et ils ont utilisé des critères de rupture élastique comme le critère de Tsai-Hill et le critère de Tsai-WU. Ces critères permettent de déterminer la force qui correspond à l’initialisation de l’endommagement, mais ils ne sont pas capables de prédire de manière précise la force de rupture et de présenter l’allure de la partie post-pic de la courbe force-déplacement. Pour palier à ce manque, Sandhaas et al. (2013) ont développé un modèle d’endommagement basé sur des critères de plasticité. En effet ils ont proposé huit critères sur les contraintes pour décrire l’endommagement du bois suivant chaque mode de sollicitation (traction, compression et cisaillement) et pour définir les surfaces de ruptures. Le comportement non linéaire est obtenu par la modification d’une matrice de rigidité ou bien d’une matrice de conformité, en la multipliant par un tenseur d’endommagement qui contient les variables d’endommagement. Ensuite, les incréments de contrainte sont calculés à partir des incréments de déformation via la matrice de rigidité variable. Le calcul de Sandhaas est basé sur la détermination des composantes du tenseur d’endommagement en fonction des paramètres élastiques et de rupture du matériau.

Les recherches élaborées auparavant pour étudier le comportement mécanique à la rupture du bois sont basées sur des critères de rupture en contrainte associés à l’elasticité, pas sur des modèles d’endommagement, ce qui peut conduire à un manque de précision dans l’estimation de la force de rupture.

La simulation du comportement endommageable du bois nécessite un modèle géométrique qui prend en compte les défauts du bois et un modèle d’endommagement appliqué aux matériaux anisotropes qui prend en compte la variation locale des propriétés mécaniques du bois due en particulier à la présence de nœuds et à la déviation de la pente du fil autour de ces nœuds.

L’objectif principal du travail de thèse concerne l’étude des mécanismes d’endommagement du bois massif de construction, par l’établissement d’outils numériques qui permettent de
modéliser le mécanisme d’endommagement du bois avec la prise en compte de ses caractéristiques hétérogènes anisotropes. Le point de départ est d’étudier les lois d’endommagement connues pour le béton et les pierres telles que la loi de Fichant, et voir comment les utiliser pour qu’elles soient adaptées au matériau biosourcé en intégrant l’anisotropie naturelle.

Méthode de Modélisation

Les lois d’endommagement existantes sont appliquées généralement aux matériaux isotropes même si l’endommagement est anisotope. La méthode que nous avons retenue à ce jour pour développer un modèle d’endommagement pour un matériau orthotrope, est basée sur la loi de Fichant (Borderie et al. 2009). Cette loi s’appliquant à l’endommagement des matériaux quasi fragiles isotropes, sera modifiée selon les caractéristiques mécaniques et géométriques du bois. De plus, le modèle doit avoir un critère ductile pour étudier l’endommagement du bois en compression.

La loi est basée sur le concept de la contrainte effective introduit par Kachanov, l’idée est d’associer à l’espace réel, où le matériau est endommagé, un espace fictif pour lequel le matériau est sain. Cela consiste à considérer que l’on obtient la même déformation pour le matériau sain équivalent et pour le matériau endommagé en lui appliquant la contrainte effective au lieu de la contrainte réelle:

\[\varepsilon = \varepsilon' \quad \sigma = A : \varepsilon \quad \text{matériau endommagé} \]
\[\sigma = M(D) : \tilde{\varepsilon} \quad \tilde{\sigma} = A : \varepsilon \quad \text{matériau sain équivalent} \]

(1)
(2)

Avec \(M(D) \) est un tenseur d’ordre 4 qui dépend de l’endommagement D, Cette méthode permet d’identifier la valeur de l’endommagement à partir des tenseurs de rigidité du matériau endommagé et du matériau sain dès lors que le tenseur M a été défini. Dans ce modèle on définit deux tenseurs d’endommagement un pour la traction (Mt) et l’autre pour la compression (Mc). C’est un tenseur défini pour l’endommagement anisotrope d’un matériau orthotrope (Murakami 2012).

En traction, le bois a un comportement quasi-fragile, dans ce cas les variables d’endommagement ont une forme exponentielle déterminée à travers la relation suivante (Fichant):

\[d_{it} = 1 - \frac{\varepsilon_{att}}{\varepsilon_{it}} \exp \left(B_{it}(\varepsilon - \varepsilon_{it}) \right), \varepsilon_{it} \geq \varepsilon_{att} \]
\[0 \leq d_{it/c} \leq 1 \]

(3)

Avec \(\varepsilon_{att} \) : la limite élastique de la déformation en traction dans la direction i

\(\varepsilon_{it} \) : la déformation principale dans la direction i

\(B_{it} \) : paramètres d’endommagement en fonction du module d’Young, de la limite de déformation et de l’énergie de fissuration.

En compression le bois à un comportement ductile : la partie post-pic de la courbe force déplacement représente un plateau, dans ce cas les variables d’endommagement sont déterminées à partir de la relation (4) :

\[\varepsilon_{att} = k_{a} \sqrt{\varepsilon_{it}^{2} + \varepsilon_{ij}^{2}} \]

(4)
\[d_{ic} = \begin{cases} \frac{1}{F_{c,i}}, & F_{c,i} \geq 1 \\ 0, & F_{c,i} < 1 \end{cases} \] (4)

Avec \(F_{c,i} \) est le critère d’endommagement en compression déterminé en fonction de la contrainte effective de compression et la limite élastique de contrainte dans chaque direction (Sandhaas 2013):

\[F_{c,i} = \left| \frac{\sigma_{ii}}{f_{ci}} \right| \] (5)

Les étapes à suivre pour développer la loi d’endommagement sont présentées dans le diagramme de la figure 1.

![Diagramme de modélisation de l’endommagement***](image)

Fig. 1 : Diagramme de modélisation de l’endommagement***

Résultats

Afin d’effectuer la validation du modèle développé, les résultats expérimentaux de Sorin (Sorin 2018) en mode I et II sur une éprouvette (TDCB) d’Épicéa sont comparés avec les résultats numériques. On observe une bonne représentation de la loi en mode I et en mode II (Figure 2).
Fig. 2: Comparaison entre les résultats expérimentaux et numériques de Sorin en mode I (a) et II (b), deux cas d’endommagement ont été modélisés: endommagement isotrope et endommagement anisotrope.(Les résultats expérimentaux sont présentés avec un trait continu)

Conclusion et perspectives

Références

Role of potassium impregnation on the interactions of lignocellulosic components of biomass during torrefaction

RICHA Larissa¹, COLIN Baptiste¹, PETRISSANS Anélie¹, L. QUIRINO Rafael², CHEN Wei-Hsin³, PETRISSANS Mathieu¹

¹Université de Lorraine, INRAE, LERMaB, F-88000 Epinal, France
²Chemistry Department, Georgia Southern University, Statesboro, GA-30460, USA
³Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
larissa.richa@univ-lorraine.fr

Keywords: Wood, Torrefaction, Potassium, Lignocellulosic components, Interactions.

Introduction
Biomass has gained importance in the renewable energy field. It produces biofuels that can generate heat and power and could be used in transportation. However, some treatments such as torrefaction are required to improve its physical and mechanical properties (Chen et al., 2021). Lignocellulosic biomass is composed of three main compounds cellulose, hemicelluloses and lignin. From a chemical perspective, hydrogen bonding exists between the cellulose and lignin, as well as the cellulose and hemicellulose. Additionally, covalent linkages, mainly ether bonds, have been proposed to be present between cellulose and lignin (Jin et al., 2006). Multiple studies have been conducted to understand these interactions in wood, however, they reached different conclusions. For instance, Zhang et al. (2015) found negligible interactions for binary physical mixtures and for the native cellulose–hemicellulose mixture. In the case of the native cellulose–lignin mixture, herbaceous biomass exhibited an apparent interaction. However, such an interaction was not found for woody biomass. It is speculated that these results are due to different amounts of covalent linkages in these biomass samples (Zhang et al., 2015). In contrast others state that the interactions between the polymers and between the intermediate products greatly impact the kinetics of the thermal degradation of biomass. Therefore, the superposition of these components is not sufficient to represent wood (George et al., 2014; Hosoya et al., 2007). Potassium (K) is a mineral present in plants that has a catalytic role on biomass torrefaction. It is speculated that K cleaves the hydrogen bonds and glycosidic linkages in cellulose and promotes the char formation of hemicelluloses (Khazraie Shoulaifar et al., 2016; Nishimura et al., 2009). The purpose of the present work is to understand the impact of the interactions of the lignocellulosic components on the wood torrefaction. Focusing on the role of potassium on these links and on the decomposition of the individual components and of native wood. Therefore, a thermogravimetric analysis (TGA) was performed on potassium impregnated samples of beech, cellulose, xylan and lignin. Then a simulated TG was obtained by superposition of these components and compared with the experimental data.

Materials and methods
Sample preparation
The biomass chosen for this work was beech wood (*Fagus sylvatica*) to possibly valorize it in the French market. Filter paper made of high purity α-cellulose (*Whatman Ashless*) was used as cellulose (Khazraie Shoulaifar et al., 2016; Nishimura et al., 2009). Hemicelluloses were represented by beech xylan (*Sigma Aldrich*). Lignin was obtained by extraction from an American paper mill (*Domtar*). The biomass was enriched with potassium through the chemical impregnation with potassium carbonate K₂CO₃ (*Sigma Aldrich*, 99.99% purity) (Khazraie
Potassium solutions were prepared by mixing with deionized water according to the desired \(K_2CO_3\) concentrations (0.004M, 0.008M and 0.012M) and are labelled accordingly. The impregnated samples were beech wood, cellulose, beech xylan and lignin. They were ground and dried for 24 h at 60°C. Then 2g of the dry sample were mixed at ambient conditions with a mixing ratio of 10 mL g\(^{-1}\) of \(K_2CO_3\) solution. The mixture was stirred for 1 h before vacuum filtration (Büchner). The retained solid was finally dried for 24 h at 60°C. Due to the difficulty in filtering, xylan was only dried in the oven after impregnation.

Thermogravimetric analysis

The degradation of wood during the torrefaction and pyrolysis was assessed by means of a thermogravimetric analysis (TGA). It relies on a precise thermal balance that registers the decrease of sample weight as a function of time and temperature. The thermal balance Mettler Toledo TGA-2 was run under inert atmosphere using 100mL min\(^{-1}\) of N\(_2\). Powdered samples were dried at 105°C for 24h prior to the experiments. Then 5mg of the sample was introduced in the crucible and heated from 50°C until 105°C at a heating rate of 20K min\(^{-1}\). It was held for 30 min this temperature to remove moisture. Then the sample was heated to the desired torrefaction temperature (300°C) and kept isothermal for 2h. The isothermal step is useful to understand the change in kinetics due to the potassium. The sample was then pyrolyzed until 850°C with a heating rate of 20K min\(^{-1}\). The DTG was obtained as the derivative of each point of the TG curve as a function of time. The TGA experiments were duplicated to ensure the repeatability of the experiments. A difference of less than 2wt% was obtained between the TG curves of the two trials.

Calculation of simulated TG

Based on the composition of beech from literature (Tab.1), the addition of the separate components is calculated to check if the equivalent curve overlaps with the experimental TG of beech. In order to do so, a component mass balance was applied which consists of considering that the sum of the mass of the beech’s constituents (lignin, xylan and cellulose) should represent the behavior of beech wood. Therefore, the following mass formula is applied for each mass obtained in the TG:

\[
m_{\text{simulated}} = \sum x_i \times m_i
\]

\(x_i\) is the mass fraction of component \(i\) (lignin, xylan or cellulose) with 0\(\leq x \leq 1\), \(m_i\) is the mass percent of component \(i\) (in wt%) as obtained from the TGA.

Results and discussion

The TG curves in fig.1 show that the degradation of cellulose was catalyzed and onset earlier by the addition of potassium. Moreover, it shifted temperature of max degradation (DTG peak) of cellulose to a lower one that matches that of xylan (Yang et al., 2006). This change is attributed to the change of crystalline cellulose into amorphous cellulose caused by potassium (Lin et al., 2021). As for xylan, the potassium increased the char formation during torrefaction and pyrolysis. Both the TG and DTG of lignin show no differences with impregnation which is logical since lignin is a complex molecule that is hard to degrade (Chen et al., 2021).

By adding the TG of each component according to their percentage in wood, the resulting simulated wood degradation is obtained (fig. 2). For raw samples, the simulated curve (red) does not overlap with the experimental (black) which is due to multiple factors. When extracting the components, the links between each other are broken (hydrogen and covalent
bonds mostly). This difference shows that these interactions have an impact on torrefaction which opposes some sources in literature that found no obvious interactions at low temperatures (Yang et al., 2006; Yu et al., 2017). Also, the extractives were not accounted for in the summation, however they participate in the degradation of wood. They start to volatilize at low temperatures which explains why the experimental curve is below the simulated one (Khazraie Shoulaifar et al., 2016). Moreover, the addition of potassium seems to further increase the difference between the curves until 0.008M, after which, the difference decreases again. These results prove that potassium interacts with the separated components increasing the gap between measured and calculated curves.

Fig. 1: TGA (a) and DTG (b) of lignocellulosic components torrefied at 300°C (continuous line is raw and dashed line is 0.004M)

Moreover, a simulated TG curve was sketched based on the addition of the TG of each component. The results show that potassium impacts the interactions between the components. It leads to a higher difference between the experimental degradation kinetics of beech and the simulated one. Therefore, as opposed to what some literature states, the interactions between the individual components of wood cannot be neglected during torrefaction. Therefore, the separate components do not behave the same way as in the native wood. Furthermore, potassium seems to break some of these links even at ambient conditions. Additional studies should be done to deeply understand this phenomenon, which could promote the use of potassium impregnation as a process for facilitating the torrefaction of wood.

Tab. 1: Beech wood composition from literature (Bodirlău et al., 2008)

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass percentage (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemicelluloses</td>
<td>21.35</td>
</tr>
<tr>
<td>Cellulose</td>
<td>47.66</td>
</tr>
<tr>
<td>Lignin</td>
<td>25.53</td>
</tr>
<tr>
<td>Total</td>
<td>94.54</td>
</tr>
</tbody>
</table>

Conclusions

In order to understand the effect of potassium on the thermal degradation of wood, it is important to study the decomposition of its constituents as well. Therefore, beech wood and its separate components: α-cellulose, beech xylan and lignin were impregnated with K₂CO₃ and torrefied using TGA. As a conclusion, potassium impacts mostly the cellulose followed by xylan and has little effect on lignin. Moreover, a simulated TG curve was sketched based on the addition of the TG of each component. The results show that potassium impacts the interactions between the components. It leads to a higher difference between the experimental degradation kinetics of beech and the simulated one. Therefore, as opposed to what some literature states, the interactions between the individual components of wood cannot be neglected during torrefaction. Therefore, the separate components do not behave the same way as in the native wood. Furthermore, potassium seems to break some of these links even at ambient conditions. Additional studies should be done to deeply understand this phenomenon, which could promote the use of potassium impregnation as a process for facilitating the torrefaction of wood.

Acknowledgment

The authors gratefully acknowledge the financial support under the program ANR-11-LABEX-0002-01 (Lab of Excellence ARBRE) in France, Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation.
Fig. 2: TG curves of beech and the simulated addition of its components for different potassium concentrations: raw (a), 0.004M (b), 0.008M (c) and 0.012M (d)

References

RIPARBELLI Lorenzo¹, BREMAND Fabrice², DIONISI-VICI Paolo¹, DUPRE Jean-Christophe², FIORAVANTI Marco¹, GAUVIN Cécilia⁵, GOLI Giacomo¹, HESSER Franck², JULIEN Delphine¹, MANDRON Patrick⁴, MARCON Bertrand⁶, MAZZANTI Paola¹, TOGNI Marco¹, UZIELLI Luca¹, GRIL Joseph⁷,⁸

¹DAGRI, Univ. Florence, Florence, Italy
²Institut PPRIME, Univ. Poitiers, CNRS, France
³LMGC, Univ. Montpellier, CNRS, Montpellier, France
⁴Les Ateliers d’Enghien, Paris, France
⁵Science and Mechanics in Conservation and Heritage, Sainte Cécile les Vignes, F-84290
⁶LaBoMaP, Arts Et Metiers Institute of Technology, UBFC, HESAM, Cluny, France
⁷Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
Univ. Clermont Auvergne, CNRS, Clermont INP, Institut Pascal, Clermont-Ferrand, France

lorenzo.riparbelli@unifi.it

Mots clefs : digital twin ; Mona Lisa ; finite elements ; panel painting ; mechanical properties ; optimisation ; experimental tests

Background and objectives

Since 2004, the Mona Lisa painting by Leonardo da Vinci has been studied by an international research group of wood scientists and several experimental campaigns have been carried out to understand its characteristics and provide suggestions for its conservation. Based on the collected data, a numerical model of the wooden panel has been developed to simulate its mechanical interaction with the framing system. The main objective of this modelling work, described in this paper, is to extract as much information as possible from the experimental tests carried out, and thus reach a sufficient level of scientific knowledge of the mechanical properties of the panel to build a predictive model. The model can be used to predict the effect of modified boundary conditions and as a tool for preventive conservation.

The artwork is painted on one face of a flat-sawn poplar (Populus alba L.) (Fig.1a) panel doubly curved (longitudinally and transversally) towards the front face and pressed against the rebate of the auxiliary frame by the action of crossbars screwed on such frame (Fig.1b) ; the external frame contributes to the stiffness of the whole through metal brackets (Fig 1c). An ancient crack runs through the wood thickness from the left upper edge of the panel down to the Lady’s forehead.
Material and Methods

The observation methods, partly described in early reports (Mohen et al 2006, Gril et al 2015), include: (i) optical measurements of the shape (Brémand et al 2011); (ii) scientific and technological analysis of the wooden panel; (iii) continuous monitoring of the forces applied by the crossbars on the back of the panel, and of the deflections at mid-height with respect to an aluminium profile equipped with transducers (Fig. 1c); (iv) identification of contact areas between the front margins of the panel and the auxiliary frame’s rebate using pressure-sensitive film (Goli et al. 2013).

1. To obtain as much information as possible from the experimental tests, thus extracting from them a deeper level of knowledge.

2. To build a predictive model of the behavior of the panel, to better understand its tensional and deformation states.

In this logic we have, firstly, focused on the use of modeling to couple experimental results and numerical methods to calculate the stiffness characteristics of the panel in a totally non-invasive way. The knowledge of the stiffness of the panel is a parameter of extreme interest; in fact, once the stiffness is known we can understand the deformation and tensional behavior of the artwork and its state of conservation. Usually, to determine the stiffness of a wood sample, invasive and sometimes destructive tests are used; in the case of the Mona Lisa, an ad hoc protocol has been developed to ensure completely non-invasive and respectful tests. Specifically, extremely slight approaches of any individual load cell towards the panel made it possible to detect small increases in force in all the cells and displacements in the transducers placed at mid-height of the panel. These variations were processed by means of a FEM simulation of the panel which made it possible to compute the actual stiffness of the panel itself. For this method to be considered reliable, it is necessary that the simulation model matches very accurately the physical reality of the panel. To achieve this goal the following steps have been implemented:
1. The shape of the panel has been reconstructed based on optical measurements.

2. The contact areas and pressures between the panel and the auxiliary frame have been precisely detected.

3. Some specific aspects of the panel’s structure (e.g., its cylindrical symmetry and the position and geometry of an ancient crack) have been identified by technological analysis.

Results and discussion

The stiffness characteristics of the panel’s wood are shown below and compared with data from the literature.

<table>
<thead>
<tr>
<th>Model</th>
<th>E_L [MPa]</th>
<th>E_R [MPa]</th>
<th>E_T [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical</td>
<td>9.7</td>
<td>1.39</td>
<td>0.83</td>
</tr>
<tr>
<td>Literature (Guitard, 1987)</td>
<td>10.1</td>
<td>1.19</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Our model, which at this point is a Digital Twin (DT) of the original panel, is strengthened by the real characteristics of the material and reacts to forces and stresses in a way similar to the original panel; it makes it possible to evaluate the internal stress states in the panel’s wood, and to test new possible framing configurations, without exposing the original artwork to any risk.

The first application studied is the modeling of the stresses and deformations orthogonal to the grain: both are in a safe range for the artwork, in its present conservation conditions.

Subsequently thanks to DT the dynamics of the ancient crack and the probability of its propagation have been studied in the light of Griffith’s theory. Confirming a previous study (Gril et al 2006), the possibility of propagation of the crack appears remote in the current conservation situation.

Another application concerns the possibility of inserting a polymer foam between the panel and the auxiliary frame. In addition to the fact that there would be a decrease in the risk of damage to the paint’s crests, the application of DT has shown a decrease, although low, in the stresses at the crack’s tip.

Last but not least, based on the DT a device conceived to maintain the forces acting on the panel into a safe range and integrated in the auxiliary frame’s crossbeams, has been proposed.

References

techniques to study Wooden Cultural Heritage Objects (WCHOs), 6-7 May 2011, Cité de la Musique, Paris, France

Quantifier les extractibles dans le bois de pin maritime (P. pinaster) : utilisation de la relaxométrie, et de l’analyse en composantes indépendantes couplée à la régression linéaire multiple

RUBINI Morandise1, CHARRIER Bertrand1

1University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical and Physicochemical Sciences for the Environment and Materials (IPREM-UMR 5254), 371 Rue du Ruisseau, 40004, Mont de Marsan, France

morandise.rubini@univ-pau.fr

Mots clefs : Extractibles ; P. pinaster ; Méthodes multivariées

Contexte et objectifs
Les teneurs en extractibles sont des paramètres qualité importants du bois. Bien que les extractibles soient des constituants non structuraux, ils influencent la plupart des propriétés du bois : stabilité dimensionnelle, propriétés physiques et mécaniques et dégradation biologique. Les techniques habituelles d’analyse en laboratoire peuvent être fastidieuses or, des méthodes fiables et simples permettent de quantifier les extractibles dans le bois. Ainsi, la spectroscopie proche infrarouge a déjà été étudiée en tant qu’outil rapide, fiable et non destructif pour quantifier les extractibles, et bien d’autres propriétés physico-chimiques du bois [1]. De même, la relaxométrie pourrait être une alternative. En effet, elle a déjà été utilisée pour quantifier les différentes formes d’eau (eau liée et libre) dans le bois. De plus, les travaux de Nicole LABBE ont montré que la relaxométrie permet de quantifier les extractibles dans le bois. L’approche univariée, et les résultats de ses travaux indiquent qu’il est possible de discriminer l’eau liée et libre dans le bois, en plus des extractibles [2 – 4]. Afin d’étudier l’intérêt de la relaxométrie sur la mesure des composés extractibles, nous avons réalisé, un plan d’expériences (plan de mélanges centrés) pour générer des échantillons, et utilisé une méthode multivariée (Analyse en Composantes Indépendantes couplée à la régression linéaire multiple) afin de créer des modèles mathématiques de quantification de l’eau, et des extractibles (essence de térébenthine et colophane) dans le bois.

Matériels et méthodes
Des échantillons à base de poudre de pin maritime ont été préparés en laboratoire à partir des propositions de mélanges générées par un plan de mélanges centrés (Simplex-centroid designs). Cette approche permet de générer des échantillons avec différents niveaux de concentration pour les constituants d’intérêts (eau, essence de térébenthine, colophane). Ainsi, 16 échantillons sont préparés (Voir Tab. 1). Chaque échantillon est constitué d’une proportion de bois fixe (60 \%) et de différentes proportions d’eau distillée, d’essence de térébenthine et de colophane. Les échantillons du plan d’expériences sont réalisés en triplicat, et dans des conditions de reproductibilité. En plus des échantillons créés avec le plan de mélanges centrés, des échantillons additionnels, qui contenaient, aux mêmes niveaux, uniquement de l’eau, ou de l’essence de térébenthine, ou de la colophane ont été préparés. En ce qui concerne les constituants, l’essence de térébenthine, et la colophane sont issues de la résine de pin maritime ; et, pour le bois, de l’aubier de pin maritime (P. pinaster) a été soigneusement sélectionné, avant d’être broyé. La poudre de bois a été séchée dans une étuve à 103°C pendant 24 heures afin d’éliminer l’eau libre et liée. Par la suite, la poudre de bois a été placée dans un dessiccateur, avant la préparation des échantillons. Une balance de
précision (Precisa XT 120A, France) a été utilisée pour peser tous les constituants (bois, eau, essence de térébenthine, colophane).

Pour la relaxométrie, l’appareil utilisé est le DIASPEC (ARTEC System, France) qui est équipé d’un aimant permanent néodyme-fer-bore (intensité de champ de 0,44 Tesla, équiv. 20 MHz en proton) maintenu à 28 °C. L’aimant correspond à un cylindre, d’axe perpendiculaire au champ, d’un diamètre de 18 mm et d’une hauteur de 20 mm. Les courbes de décroissance ont été obtenues par la séquence d’impulsions Carr-Purcell-Meiboom-Gill (CPMG). Pour la séquence d’impulsions CPMG, les temps des impulsions π/2 et π étaient respectivement de 5,6 et 10,8 μs, 1000 échos (τ) de 1000 secondes ont été utilisés, et enfin, une accumulation de 32 scans a permis d’améliorer le rapport signal sur bruit. L’analyse des échantillons a été effectuée à température ambiante. Des tubes à essai (Ø externe : ~ 20 mm) contenant les échantillons ont été insérés dans l’aimant sans autre traitement.

Pour l’analyse de données, l’analyse en composantes indépendantes (ICA) a été utilisée. C’est une technique où les données sont transformées linéairement en composantes qui sont au maximum indépendantes les unes des autres. Cela peut être déduit de la non-gaussianité, c’est pour cela que l’algorithme Joint Approximation Diagonalization of Eigen-matrices a été utilisé.

Tab. 1 : Résultats du plan de mélanges centrés

<table>
<thead>
<tr>
<th>Bois (%)</th>
<th>Eau (%)</th>
<th>Essence de térébenthine (%)</th>
<th>Colophane (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,0</td>
<td>33,2</td>
<td>6,8</td>
<td>0,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>33,2</td>
<td>6,8</td>
<td>0,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>36,0</td>
<td>0,0</td>
<td>4,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>36,0</td>
<td>0,0</td>
<td>4,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>24,2</td>
<td>10,0</td>
<td>5,8</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>29,2</td>
<td>3,3</td>
<td>7,5</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>17,8</td>
<td>10,0</td>
<td>12,2</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>25,7</td>
<td>0,0</td>
<td>14,3</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>18,9</td>
<td>4,1</td>
<td>17,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>18,9</td>
<td>4,1</td>
<td>17,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>18,9</td>
<td>4,1</td>
<td>17,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>8,8</td>
<td>10,0</td>
<td>21,2</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>16,0</td>
<td>0,0</td>
<td>24,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>10,0</td>
<td>0,0</td>
<td>30,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>1,5</td>
<td>8,5</td>
<td>30,0</td>
<td>100</td>
</tr>
<tr>
<td>60,0</td>
<td>1,5</td>
<td>8,5</td>
<td>30,0</td>
<td>100</td>
</tr>
<tr>
<td>MIN</td>
<td>60,0</td>
<td>1,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>MAX</td>
<td>60,0</td>
<td>36,0</td>
<td>10,0</td>
<td>30,0</td>
</tr>
</tbody>
</table>

Résultats et discussion

Quelques courbes de relaxation des échantillons sont présentées dans la Fig. 1. L’amplitude, la caractéristique principale de ces courbes est différente : celle de l’essence de térébenthine est beaucoup plus importante comparée à celle de l’eau.

La méthode ICA_by_Blocks a été utilisée pour estimer le nombre optimal de variables latentes (Composantes Indépendantes = ICs). Le résultat est présenté dans la Fig. 1. Avec les 2 blocs choisis, la méthode ICA_by_Blocks fonctionne comme suit : (1) répartition des n individus de X (n,p) en B = 2 blocs représentatifs de X (B₁(n/2, p), et B₂(n/2, p)) ; (2) pour
chaque bloc, F_{max} modèles mathématiques sont calculés avec $nF = 1, 2, 3, ..., F_{\text{max}}$ ICs ; (3) calcul des corrélations entre les ICs extraites ; (4) le modèle donnant le plus grand nombre d’ICs corrélées indique le nombre optimal d’ICs.

Avec ces données, 2 composantes indépendantes sont retenues (Voir Fig. 1). Cela suggère qu’il existe deux types de signaux à l’intérieur des données. En accord avec le principe de la relaxométrie, l’allure des deux ICs étaient celles d’exponentielles décroissantes (données non montrées).

Pour l’analyse de données, les scores associés aux deux ICs ont été combinés pour la régression linéaire multiple (MLR). Les résultats des modèles ICA + MLR sont présentés dans le Tab. 2. Dans les cas de l’eau, et de l’essence de térébenthine, les statistiques des modèles sont excellentes, les coefficients de détermination sont très élevés, et les erreurs sont relativement faibles par rapport aux valeurs modélisées. Dans le cas de la colophane, le modèle ICA + MLR n’est pas un succès. Cela pourrait s’expliquer par le fonctionnement du relaxomètre.

Tab. 2 : Résultats des modèles mathématiques ICA + MLR

<table>
<thead>
<tr>
<th></th>
<th>Cross-Validation</th>
<th></th>
<th>Validation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nombre d’échantillon</td>
<td>R^2_{CV}</td>
<td>Standard-Error (%)</td>
<td>Nombre d’échantillon</td>
</tr>
<tr>
<td>Eau</td>
<td>64</td>
<td>0,99</td>
<td>0,28</td>
<td>32</td>
</tr>
<tr>
<td>Essence de térébenthine</td>
<td>44</td>
<td>0,99</td>
<td>0,30</td>
<td>22</td>
</tr>
<tr>
<td>Colophane</td>
<td>56</td>
<td>0,18</td>
<td>14,71</td>
<td>28</td>
</tr>
</tbody>
</table>

Conclusion et perspectives

Sur la base des résultats obtenus, l’utilisation du modèle ICA + MLR dans l’analyse des courbes de relaxation serait une bonne méthodologie pour quantifier de manière fiable et rapide l’eau, et l’essence de térébenthine dans le bois. L’approche présentée est « théorique », la prochaine étape sera de mettre en place des expériences complémentaires en laboratoire sur des échantillons réels afin de confirmer cette approche.

Références

Thermo-densification of beech wood pretreated with furfurylation

DAMAY Jérémie1, ETIENNEY Bertille1, OBOUNOU AKONG Firmin1, SEJATI Prabu Satria12, DWIANTO Wahyu2, GERARDIN Philippe1

1 LERMAB, EA 4370, Université de Lorraine, Faculté des Sciences et Technologies, BP 70 239, F-54506 Vandoeuvre-lès-Nancy, France
2 Research Center for Biomaterials, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Bogor 16911, West Java, Indonesia

prabu-satria.sejati@univ-lorraine.fr

Key words: beech wood, thermo-densification, furfuryl alcohol, impregnation, dimensional stability, Brinell hardness

Context and objectives

Wood is natural polymer that easily degraded by biotic as well as abiotic factors. Therefore its utilization as a building material is not quite optimal. Furthermore, competition with other building materials utilization forced the supply of high quality wood based products. In this regards, wood modification including furfurylation, has been developed to obtained high dimensional stability and durability of wood as well as to replace the conventional preservation method that potentially pollute the environment. In other side, wood densification seems to be interesting way to increase mechanical properties of wood. European beech (Fagus sylvatica L.) is a major tree species of European forest that is underexploited because of its low dimensional stability and durability. The purpose of this study is to combine these two methods to enhance beech wood dimensional stability and hardness especially (Pfriem et al. 2012).

Materials and method

Samples were impregnated under vacuum with a furfuryl alcohol solution containing tartaric acid as catalyst and water (Sejati et al. 2017). Solutions used in this study were furfuryl alcohol solution varying from 50%-90% and tartaric acid 5% and the rest being water. A diffusion step and a drying step at room temperature were applied. Afterwards, samples were thermo-densified using a heating press, inside which compression and curing took place (Han 2019). Diffusion time and air-drying duration were ranged 15h to 24h. Samples were maintained compressed during the whole curing duration (Westin et al. 2009). Temperature of compression was 120°C, range of time was from 5h to 8h. Compression ratio was set to 15% and 30% in tangential direction. The modified wood than characterized by the weight percentage gain (WPG), density, dimensional stability, set recovery or linear swelling in the compression direction, and the Brinell hardness.

Results and discussion

Weight percentage gain (WPG) represent the furfuryl alcohol polymerized to the wood. Table 1 showed that higher concentration of FA resulted higher WPG after pressed with 15% compression ratio. Furfurylated wood pressed with 15% compression ratio resulted higher WPG than those pressed with 30% ratio. Wood densification increased the density of water impregnated wood from about 0.7 g/cm³ to 0.78 g/cm³, meanwhile the densification of furfurylated wood with 15% compression ratio increase 40-48% its density. Even though 30% compression ratio treatment resulted lower WPG, the density was increase 68% than the native beech wood.
Tab. 1: WPG and density of thermo-densified wood pretreated with furfurylation in different condition of impregnation solution and pressing

<table>
<thead>
<tr>
<th>Solution</th>
<th>Compression parameters</th>
<th>WPG (%)</th>
<th>Density (g.cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>t=15h, c=15%</td>
<td>-0,42±0,04</td>
<td>0,78±0,01</td>
</tr>
<tr>
<td>50% FA + 5% TA</td>
<td>t=5h, c=15%</td>
<td>35,31±0,68</td>
<td>0,98±0,01</td>
</tr>
<tr>
<td>60% FA + 5% TA</td>
<td>t=5h, c=15%</td>
<td>36,10±1,24</td>
<td>1,04±0,01</td>
</tr>
<tr>
<td>85% FA + 5% TA</td>
<td>t=8h, c=15%</td>
<td>38,81±0,70</td>
<td>1,03±0,01</td>
</tr>
<tr>
<td>90% FA + 5% TA</td>
<td>t=8h, c=15%</td>
<td>41,07±3,02</td>
<td>1,04±0,01</td>
</tr>
<tr>
<td>85% FA + 5% TA</td>
<td>t=8h, c=30%</td>
<td>31,67±1,66</td>
<td>1,17±0,03</td>
</tr>
<tr>
<td>90% FA + 5% TA</td>
<td>t=8h, c=30%</td>
<td>30,70±0,67</td>
<td>1,16±0,01</td>
</tr>
</tbody>
</table>

FA: Furfuryl Alcohol, TA: Tartaric Acid, t: duration, c: compression ratio, WPG: Weight Percent Gain

Figure 1 showed that furfuryl alcohol polymerization play important role in the dimensional stability of densified furfurylated wood. Wood swelling of 30% compression ratio treatment ranged from 13.45 to 16.42%, while sample treated with 15% compression ratio show better swelling between 11.58 to 12.78%. These results were better than that for the sample impregnated with water alone, which resulted in 33.69% of swelling. Without any pretreatment, wood will recover to part of its initial thickness after the densification. Set recovery was measure in the direction of wood compressed. In line with the swelling result, furfurylation pretreatment seems resulted permanent fixation than water impregnated densified wood.

Conclusion and perspectives

Modification of beech wood by combination of thermo-densification pretreated with furfurylation showed promising alternative method that could increase its density, dimensional stability, fixation, and mechanical properties, thus offering new non-biocidal alternatives the use of some toxic preservatives and use of endangered exotic species. These improved properties might lead to new uses for modified beech wood.
Reference

Le Bois : support de création et enjeux de préservation

Si la toile s’est imposée à partir du XVIIe siècle comme le support privilégié de la peinture de chevalet, le bois est le matériau dominant pour les périodes plus anciennes, tout au long du Moyen Âge et durant la Renaissance. Le bois présente des propriétés de solidité, de résistance mais également de souplesse qui en font un matériau adéquat à l’exécution d’une image peinte et à sa bonne préservation à travers le temps. La préparation du tableau sous la forme d’un panneau composé d’une ou de plusieurs planches, parfois assemblées en volets distincts, nécessite cependant la maitrise de technologies complexes, définis et théorisées par les artistes dès l’époque pré-moderne. La préparation implique une bonne connaissance des essences de bois, la coupe de la ou des planches dans un sens adéquat, leur ponçage, encollage, isolation à l’aide de différentes techniques dont les œuvres de même que les traités anciens relatifs à l’art de peindre rendent aujourd’hui témoignage.

Giorgio Vasari, Saint Luc peignant la Vierge, 1565, fresque, Florence, Basilique de la très Sainte Annonciation.

Du fait de ses propriétés matérielles, la peinture sur bois a remporté la faveur de certains artistes, de certaines écoles ou a pu être choisie pour traiter certains sujets, pour exécuter des tableaux de certaines dimensions. Tous ces éléments ont contribué à définir de véritables valeurs esthétiques associées à ce support : précision de la représentation, « fini » de l’exécution, intensité des couleurs, etc.

Certaines écoles, certains foyers, certains groupes artistiques ont pu le favoriser à l’encontre des préférences de leur période : les peintres florentins continuent à privilégier les panneaux de bois à la fin du XVIᵉ siècle et au début du XVIIᵉ siècle, alors que les Vénitiens imposent l’usage de la toile en Europe.

Les artistes flamands et surtout hollandais du XVIIᵉ siècle privilégient ce support dans leurs tableaux de petits formats peints pour les cabinets de collectionneurs.

Alessandro Allori, Vénus et l’Amour, vers 1575-1580, huile sur bois, 143 x 226,5 cm, Montpellier, musée Fabre.

Gerard ter Borch, Jeune hollandaise versant à boire, 1650, huile sur bois, 34,5 x 27,5 cm, Montpellier, musée Fabre.
En France, certains peintres réalistes ou des paysagistes de l’école de Barbizon apprécient également ce support au cœur du XIXᵉ siècle. A cet égard, le musée Fabre conserve dans ces collections un bel ensemble représentatif de la diversité des écoles et des périodes de création.

En tant que matériau organique, les panneaux de bois sont susceptibles d’être exposés à des risques de dégradation liés à des changements climatiques, de température ou d’humidité. Selon les changements induits dans son environnement, le bois, support de la peinture, absorbe et réabsorbe l’humidité ambiante, suscitant des transformations mécaniques du support, voire des dégradations et des pertes de peinture. La prise de conscience de ces risques est ancienne et a conduit les artistes comme les restaurateurs à concevoir des procédés visant à stabiliser ces éventuels déformations : ajout de pièces de maintien, renforcement au revers par des parquetages ou des châssis complémentaires, transposition de la couche picturale sur un nouveau support de bois ou de toile, etc.

Les réflexions aujourd'hui menées dans les musées, et notamment au musée Fabre, se fondent sur une approche systémique. Elles s’appuient à la fois sur des recherches d’ordre climatique (meilleure surveillance du climat de chaque salle, mise en place de caisson climatique permettant d’isoler l’œuvre de son environnement, meilleure connaissance de la sensibilité des différentes œuvres aux variations climatiques), tout autant que sur la mise en place de systèmes mécaniques accompagnant la conservation de l’œuvre (châssis cadre adapté, suppression de montage néfastes, etc.).

Le musée Fabre a notamment organisé, en partenariat avec des restaurateurs et des universités, une étude particulièrement poussée sur les variations mécaniques d’une peinture flamande anonyme du début du XVIᵉ siècle, La Sainte Trinité couronnant la Vierge. L’étude menée depuis cinq ans est suivie par trois laboratoires de recherche qui ont été contactés afin d’analyser le comportement du panneau au cours de variations d’humidité et selon des paramètres évolutifs au cours du temps. Une
enceinte climatique a spécialement été conçue par le restaurateur pour installer l’œuvre dans un milieu étanche où l’humidité y est contrôlée.

Cette intervention se propose, dans le cadre des collections du musée Fabre, de présenter un riche échantillon d’œuvres exécutées sur bois, de diverses périodes et de diverses écoles. Elles illustreront chacune à leur manière différents types de procédés de préparation, de réalisation et de montage, tout autant qu’elles mettront en exergue la diversité des défis posés au musée aujourd’hui en terme de conservation et de restauration de ces œuvres aux propriétés singulières. L’étude de La Sainte Trinité couronnant la Vierge sera notamment présentée de manière détaillée.

Marina Bousvarou, Pierre Stépanoff
Tirer parti d’une énergie fluctuante pour le séchage du bois grâce à un automate intelligent

STEPHAN Antoine¹, L’HOSTIS Clément², PERRÉ, Patrick³, RÉMOND Romain¹

¹Université de Lorraine, LERMAB, 27 rue Philippe Séguin, 88051 Épinal, France
²FCBA, 10 rue Galilée, 77420 Champs-sur-Marne, France
³LGPM, Université Paris Saclay, CentraleSupéléc, 91190 Gif-sur-Yvette, France

antoine.stephan@univ-lorraine.fr

Mots clefs : Séchage du bois ; EnR&R fluctuante ; Régulation intelligente ; Mécanosorption ; Conduite DQC

Contexte et objectifs

Le séchage est une étape essentielle de la transformation du bois : elle rend possible la stabilité et la pérennité du matériau et des ouvrages bois. Cette étape est cependant très énergivore ; elle nécessite aujourd’hui jusqu’à 3 kWh.Kg⁻¹ d’eau évaporée, ce qui représente une part importante dans le bilan énergétique de la transformation du matériau. Activité ancestrale, le séchage du bois repose sur un savoir empirique, appliqué dans l’industrie sous la forme de conduites de séchage, garantissant un séchage rapide et qualitatif, c’est-à-dire limitant l’apparition de fentes, discolorations, et d’autres défauts. Les conduites de séchages consistent à augmenter la température et à diminuer l’humidité de l’air lorsque l’humidité des planches décroit. Les conduites de séchages requièrent donc une source d’énergie continue et de fortes puissances telles que ne d’employée à des ventilateurs électriques. Cette étape de séchage est donc un coût important pour l’environnement et nécessite la mobilisation de fonds et d’équipements conséquents, peu accessibles aux petites unités de production.

Un séchage du bois remplissant des critères de durée, qualité et coût (DQC) et à faible impact environnemental est souhaitable. L’utilisation des énergies renouvelables et récupérables (EnR&R) au sein d’un réseau énergétique intelligent serait une réponse efficace en terme de réduction de la facture énergétique. Ces énergies, qui peuvent notamment provenir des cellules photovoltaïques, des éoliennes et des extrants industriels, sont intermittentes et irrégulières ; leur utilisation pour le séchage requiert d’adapter en permanence la conduite de l’opération selon l’énergie disponible et de pouvoir l’effectuer à des températures plus basses que celles couramment employées (généralement, 60°-90°C pour l’épicéa, 40°-70°C pour le hêtre, 40°-60°C pour le chêne). Lors du séchage, l’humidité du bois évolue d’abord près des faces d’échange et le champ d’humidité dans la planche n’est donc pas uniforme. Un gradient s’établit au sein de la pièce de bois qui est à l’origine d’un champ de retrait non-uniforme, source de déformations et de contraintes. Si la contrainte dépasse la contrainte de rupture du matériau des fentes apparaissent.

La mécano-sorption est une manifestation particulière des couplages hygromécaniques et se traduit par une augmentation du fluage du bois sous humidité variable. Ce comportement a été défini par Grossman (1971). Les EnR&R utilisées pour le séchage peuvent être assimilées à des fluctuations de l’apport énergétique, et donc à des oscillations de la température, du taux d’humidité et de la ventilation au sein du séchoir. La fluctuation des conditions dans le
10èmes journées du GDR 3544 « Sciences du bois » - Montpellier, 17-19 novembre 2021

séchoir s’accompagne d’une variation de la teneur en eau à la surface des planches. Celle-ci va activer le fluage mécano-sorptif à la périphérie de la planche, siège des contraintes de séchage, et ainsi les relaxer en partie. En raisonnant à qualité de séchage équivalente, il devrait être possible de durcir les conditions de séchage pour sécher le bois plus vite.

Cet effet des oscillations des conditions de séchage sur la qualité du produit a été étudié dans plusieurs travaux de thèses (Rémond (2004), De la Cruz Sanchez (2012), Salem (2016)). Mais des travaux complémentaires sur le comportement mécano-sorptif dans le plan transverse du matériau sont nécessaires pour pouvoir maîtriser l’activation de ce comportement dans un séchoir à bois.

L’utilisation d’EnR&R pour le séchage du bois nécessite de lever plusieurs verrous :

- la mécano-sorption doit pouvoir être finement caractérisée et modélisée car à basse température (en dessous de 40°C) le séchage est lent et la thermo-activation des propriétés viscoélastiques du bois est trop faible pour relaxer une partie des contraintes internes. La mécano-sorption peut en revanche être activée par les fluctuations d’humidité pour réduire ces dernières et améliorer la qualité du produit séché.
- le caractère imprévisible de l’énergie fluctuante, dont la disponibilité et le niveau énergétique varie au cours du temps, requiert une adaptation permanente de la conduite de séchage à l’énergie disponible et à la charge de bois concernée.

L’automate de régulation des séchoirs et les capteurs déjà en place ne sont plus suffisants, car ils ne sont pas adaptés à faire face à cette dynamique de l’apport énergétique. Le projet de thèse vise à apporter des solutions aux verrous constatés avec pour objectif de conduire de manière autonome, sur une unité pilote, le séchage de planches de bois en utilisant une énergie fluctuante.

Matériel et méthode

Le projet de thèse se déroulera en 3 tâches successives (Fig. 1). La première tâche consiste à caractériser la mécano-sorption du bois soumis à des variations de température et d’humidité, entre 20 et 35 °C et entre 6 et 12 % d’humidité d’équilibre. Le comportement mécano-sorptif sera mesuré sur un banc d’essai statique et comparé au test de Flying Wood (Aguiar (2000)). La confrontation avec le modèle numérique TransPore et son module mécanique (Perré et Turner 1999, Rémond et al. 2007) permettra de tester différents modèles de comportement mécanique afin d’améliorer son potentiel prédictif au niveau de la qualité du produit séché, principalement ici le niveau de contrainte et de déformation. L’étude s’intéressera à deux essences tempérées feuillues, le chêne et le hêtre, respectivement 1ère et 2ème essence en terme de volume sur pied en France. Le chêne présente notamment un risque de collapse et discoloration au séchage, dont la durée importante affecte l’efficacité énergétique. Le hêtre peut être séché plus rapidement mais présente un risque de changement de couleur, et des risques de fentes et de déformations au séchage importants du fait de sa nervosité. Leurs caractéristiques au séchage contrastées et les potentiels d’économies d’énergie et d’amélioration de la qualité en font des candidats idéals pour cette nouvelle conduite de séchage.
La deuxième tâche vise à assurer un pilotage fin du séchage, selon l’énergie disponible et l’état de contrainte dans le bois. Le développement d’un nouveau capteur de l’état de contrainte (étude en cours de brevetabilité), permettra d’alimenter au cours du séchage le modèle numérique double échelle planche-pile (Perré et al. (2006)) utilisant le code *TransPore* à l’échelle locale. Ce modèle sera intégré dans l’automate de régulation du procédé (Fig. 2), et ajustera en temps réel les consignes d’humidité, température et ventilation du séchoir selon les prédictions obtenues et l’énergie disponible.

La troisième tâche a pour objectif de valider l’automate et les différentes conduites sur le séchoir pilote du LERMAB (capacité utile de 0,3 m³). Des tests de résistances seront menés pour mesurer la fiabilité de l’automate aux variations d’énergie ; des simulations menées sur Matlab Simulink seront confrontées aux données expérimentales du séchoir du LERMAB et aux données du projet OSSOLAIRE (FCBA, Cathild, BASE - séchage du bois par énergie solaire).

Conclusion et perspectives

Ce projet de thèse vise à utiliser le comportement mécano-sorptif du bois pour réduire les contraintes de séchage avec des variations de température et d’humidité. L’automate intelligent envisagé pour la conduite du séchage, intégrant un modèle prédictif basé sur *TransPore*, serait une innovation importante et permettrait d’optimiser le séchage au niveau
des critères de durée, qualité et coût. Ces deux avancées combinées permettraient d’utiliser les EnR&R fluctuantes qui réduiraient l’impact environnemental du séchage tout en maitrisant la qualité du bois transformé et la durée du séchage.

Remerciements
L’Ademe est partenaire du projet et co-finance une bourse de thèse dans le cadre de la thématique « Forêt, agriculture et bioéconomie ».

Références

Étude de sensibilité des paramètres descriptifs du comportement d’une structure ancienne en bois : la halle de Villeréal

TEVI Komlan Renaud1, ELACHACHI Sidi Mohammed1, COINTE Alain1, MAURIN Emmanuel2

1Institut de Mécanique et d’Ingénierie, Département Génie Civil et Environnemental, 351 cours de la libération, 33405 Talence Cedex, France
2Laboratoire de Recherche des Monuments Historiques, 29 Rue de Paris, 77420 Champs-sur-Marne
komlan-renaud.tevi@u-bordeaux.fr

Mots clefs: diagnostic ; assemblages traditionnels ; étude de sensibilité ; plans d’expériences ; surfaces de réponse.

Contexte et objectifs
L’importance d’un modèle mécanique dans la méthodologie de diagnostic d’une structure ancienne en bois est sans cesse grandissante. Dans la méthodologie d’analyse mécanique développée au cours de sa thèse (André 2003), l’auteur a souligné la mise en évidence des paramètres influents sur le comportement global d’une structure. La norme NF EN 17121 (AFNOR 2019) relative aux lignes directrices pour l’évaluation sur site des structures porteuses en bois mentionne l’importance d’identifier et d’indiquer les niveaux de contraintes au niveau des principaux éléments structuraux. Or l’analyse mécanique de structures anciennes en bois est soumise à plusieurs sources d’incertitudes (aléatoires/épistémiques) et la prise en compte de tous les facteurs incertains pour une analyse fiabiliste semble utopique et exigerait un coût numérique important. Il convient alors de tester la sensibilité de la réponse mécanique de la structure aux paramètres d’entrée. L’étude décrite, à travers ce résumé rentre dans le cadre d’une thèse portant sur la méthodologie d’évaluation de la santé structurale d’une structure bois du patrimoine en s’appuyant sur un cas concret (la halle de Villeréal). Une analyse de sensibilité des paramètres d’entrée sur la réponse globale de la structure est menée en considérant certains paramètres du bois (le module d’élasticité statique et la masse volumique) et des paramètres mécaniques d’assemblages (raideurs).

Matériel et méthodes
Les plans d’expérience
L’utilisation des plans d’expérience dans l’analyse mécanique recouvre un double objectif : le premier est d’identifier les paramètres influents du modèle mécanique en évaluant leur sensibilité mécanique (Goupy 2006) et le second objectif est la construction des surfaces de réponse par une régression (Myers et al. 2016).

Le principe de fonctionnement des plans d’expériences consiste à créer une table de paramètres qui constituent les entrées pour une expérience, un essai ou une simulation numérique et à analyser la réponse du système étudié pour chaque jeu de paramètres.
Fig. 1 : Principe de fonctionnement général des plans d’expérience

Un plan d’expérience est associé à une matrice d’essais X constituée par :
- N lignes représentant le nombre de simulations ou combinaisons de facteurs à réaliser,
- k colonnes représentant le nombre de paramètres ou facteurs à tester.

Dans cette étude, les facteurs ou variables analysés sont la masse volumique, le module d’élasticité du bois, la raideur axiale K_x des assemblages, la raideur transverse K_y et la raideur rotationnelle K_{θ}.

On définit des niveaux de valeurs pour chaque paramètre. Le niveau de référence (Niveau 0 dans le Tab. 1) des paramètres est évalué soit par une approche normative soit expérimentalement. Les niveaux supérieurs et inférieurs sont estimés en multipliant/divisant par un facteur de 2 le niveau de référence (si le paramètre est estimé par une approche normative) ou en considérant l’étendue des mesures effectuées (si le paramètre est estimé expérimentalement, ce qui est le cas de la masse volumique et du module d’élasticité).

Tab. 1 : Niveaux des paramètres étudiés

<table>
<thead>
<tr>
<th>Variables</th>
<th>Niveau -2</th>
<th>Niveau -1</th>
<th>Niveau 0</th>
<th>Niveau 1</th>
<th>Niveau 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_x [N/m]</td>
<td>0,45.107</td>
<td>0,9.107</td>
<td>1,8.107</td>
<td>3,6.107</td>
<td>7,2.107</td>
</tr>
<tr>
<td>K_y [N/m]</td>
<td>2,25.106</td>
<td>0,45.107</td>
<td>0,9.107</td>
<td>1,8.107</td>
<td>3,6.107</td>
</tr>
<tr>
<td>K_{θ} [N.m/\text{rad}]</td>
<td>72500</td>
<td>145000</td>
<td>290000</td>
<td>580000</td>
<td>1,16.107</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>630</td>
<td>675</td>
<td>720</td>
<td>765</td>
<td>810</td>
</tr>
<tr>
<td>E [N/m2]</td>
<td>8,00.107</td>
<td>9,50.107</td>
<td>1,1.1010</td>
<td>1,25.1010</td>
<td>1,4.1010</td>
</tr>
</tbody>
</table>

Le plan utilisé pour la construction de la matrice d’essais est le Generalized Subset Design (Surowiec et al. 2017) qui permet l’étude des facteurs avec différents nombres de niveaux et réduit le nombre de simulations par un coefficient souhaité par l’utilisateur comparativement à un plan factoriel complet.

La méthode des surfaces de réponse

La méthode des surfaces de réponse (RSM : Response Surface Methodology) a pour objectif d’établir à travers une analyse de régression des relations mathématiques entre les variables d’entrée du modèle et la réponse de la structure. Elle constitue une généralisation de l’analyse par plans d’expérience. Le modèle mathématique utilisé est souvent une fonction polynomiale et peut être de degré 1 (surface de réponse plane) ou de degré 2 (surface de réponse quadratique). Le second type utilisé dans cette étude s’écrit sous forme algébrique :
Où les coefficients a_0, a_i et a_{ij} sont recherchés en minimisant l’erreur entre les réponses observées (obtenues par calcul éléments finis) et les réponses estimées par le modèle mathématique.

Premiers résultats

L’influence des paramètres est observée à travers les variations de pente autour de la moyenne (ligne rouge sur la Fig. 2 et la Fig. 3). Les Fig. 2 et Fig. 3 montrent respectivement les effets des paramètres d’assemblages et des propriétés matérielles sur la contrainte de compression maximale des poteaux au sein de la structure.

D’autres variables de réponse structurelle comme les déplacements nodaux maximums, les contraintes de flexion des poutres sont considérées pour cette étude. Globalement, on note une influence prépondérante des paramètres d’assemblages comparativement aux propriétés matérielles.

Afin d’évaluer l’influence des interactions entre la réponse considérée, la RSM est utilisée en considérant 3/5 de la table d’essais pour calibrer le modèle mathématique et 2/5 pour la validation du modèle obtenu. Des résultats satisfaits ($R^2 > 0.8$) sont obtenus pour la réponse considérée (Fig. 4).
Conclusion et perspectives

D’après les premiers résultats, il semble que l’influence des paramètres d’assemblages soit plus marquée que celle des propriétés du matériau (masse volumique et module d’élasticité). On note également l’influence des interactions entre la masse volumique et les raideurs d’assemblages sur la réponse considérée. Les relations établies par la méthode des surfaces de réponse prennent en compte les facteurs ayant une influence significative et permettront de réaliser une étude probabiliste en limitant le nombre de simulations. Vu l’influence des raideurs d’assemblages, il est important de maîtriser les valeurs de référence utilisées pour l’étude de sensibilité ce qui explique la mise en place d’essais pour la caractérisation d’assemblages traditionnels en bois.

Références

Goupy J. 2006. « LES PLANS D’EXPERIENCES », 43.
Recyclage du MDF par explosion à la vapeur

TROILO Sarah1,2, BESSERER Arnaud1, SOUFFLET Lucas2, BROSSE Nicolas1

1LERMAB, Université de Lorraine, INRAE, GP4W F54000 Nancy, France
2CF2P, Zi Tertre Landry, 70200 Lure, France
sarah.troilo@cf2p.eu

Mots clés : déchets bois, MDF, explosion à la vapeur, recyclage, fibres

Contexte et objectifs

Depuis plusieurs décennies, les habitudes de consommation des ménages ont évolué avec la diminution de la durée de vie du mobilier intérieur. Ces modifications ont entrainé une forte augmentation des déchets d’éléments d’ameublement (DEA). En 2019, la quantité de DEA collectés a dépassé une tonne et seulement une partie a été valorisée (ADEME, 2020). Les DEA sont constitués à plus de 50% de déchets bois et le MDF (Medium Density Fiberboard) constitue environ 15% des déchets bois (estimation Eco-Mobilier). Ce panneau de fibres de bois contient au moins 5% de résine urée-formaldéhyde (UF) qui est une substance inflammable, toxique, corrosive, dangereuse pour la santé et pose des problèmes à plusieurs niveaux concernant son recyclage. En 2019, la production française de MDF était supérieure à un million m³ (Memento FCBA, 2020) alors que le volume de déchets MDF générés durant les cinq dernières années dans le monde est évalué à 220 millions m³. Ce chiffre est en constante augmentation (Irle et al., 2019). Le problème du recyclage du MDF constitue donc un enjeu majeur pour l’industrie de l’ameublement et, plus généralement, pour la filière forêt bois. Cependant, il n’existe aucune filière à l’échelle industrielle de valorisation ou de recyclage du MDF et les panneaux sont en majorités incinérés ou enfouis.

L’objectif de ce travail est de développer un traitement des fibres de MDF afin de les rendre recyclables en vue d’une future valorisation. Les déchets MDF ont été traités par un processus d’explosion à la vapeur dont les enjeux sont doubles : fragmenter les déchets MDF afin de séparer les fibres de MDF les unes des autres et épurer la résine UF des fibres par hydrolyse. L’efficacité du traitement a été évaluée par plusieurs méthodes. Les constituants de la résine UF ont été quantifiés et la présence de la résine sur les fibres a été observée au microscope confocal à fluorescence. La caractérisation des fibres a été complétée avec une analyse en proche infrarouge ainsi qu’un profil granulométrique.

Matériel et méthode

Fragmentation du MDF et élimination de la résine.

Des cubes de MDF (100g) ont été traités dans un réacteur de 4,8L d’explosion à la vapeur. Dans le réacteur, de la vapeur est introduite jusqu’à obtenir la température souhaitée. Cette température est maintenue pendant une durée déterminée appelée temps de séjour. L’ouverture d’une vanne pneumatique provoque une chute de pression et projette les fibres de MDF dans un éclateur. La sévérité du traitement est déterminée par l’équation 1 où S est le facteur de sévérité, t le temps de séjour (min) et T la température (°C). Les essais ont été réalisés pour des températures comprises entre 180 et 210°C et des temps de séjour de 5, 10 et 20 minutes. Les fibres de MDF fragmentées ont été ensuite centrifugées à 10000 x g pendant 10 minutes, séchées à 80°C puis séparées manuellement.
Caractérisation des fibres de MDF traitées par explosion à la vapeur

La résine UF présente dans les panneaux de MDF est constituée d’urée (H₂NCONH₂) et de formaldéhyde ((CH₂O)n). La quantification de l’azote (N) et du formaldéhyde sur les fibres avant et après traitement permet d’évaluer l’efficacité du procédé d’explosion à la vapeur. Le taux d’azote a été déterminé par une analyse élémentaire. Les émissions de formaldéhyde ont été mesurées d’après la méthode au perforateur (AFNOR, 2016).

Les fibres de MDF ont été colorées à la safranine 0,1% et observées au microscope confocal afin de visualiser la résine UF sur les fibres de MDF avant et après traitement. La composition des fibres de MDF a ensuite été caractérisée de façon quantitative par une analyse en proche infrarouge suivie d’une analyse en composante principale (ACP). Enfin, la taille des fibres a été caractérisée par une analyse granulométrique.

Résultats et discussion

Quantification des polluants

Le traitement par explosion à la vapeur supprime complètement les émissions de formaldéhyde. La quantification de l’azote dans les fibres de MDF est présentée en Figure 2. La barre noire représente les fibres de MDF non traitées. Les quantifications montrent que l’efficacité du traitement varie en fonction du temps et de la température. Pour tous les essais, le taux d’azote diminue après le traitement par explosion à la vapeur. Lorsque la sévérité du traitement est trop douce, la fragmentation du MDF est incomplète et l’élimination de l’azote est réduite. Pour les traitements entraînant une fragmentation totale, environ 80% de l’azote est éliminé. Une augmentation de la sévérité du traitement n’a pas permis d’améliorer l’élimination de l’azote. Ces résultats sont en accord avec des travaux antérieurs où le traitement des fibres (réalisé par raffinage à la vapeur) montre qu’au maximum 80% de la résine est solubilisée et 20% de l’azote reste sur les fibres (Hagel et al., 2021).

![Fig. 2 : Quantification de l’azote dans les fibres de MDF par analyse élémentaire. Barres = moyennes de 3 réplicats. Barres d’erreurs = IC 95 %.](image-url)
Observation des fibres au microscope confocal

Des fibres non encollées et de la résine UF colorées à la safranine ont été observées au microscope confocal afin de réaliser des spectres d’émission de fluorescence. Les maxima d’émission étant distincts, il est possible d’appliquer une déconvolution spectrale en tout pixel de l’image afin d’attribuer un signal à la résine (vert) et au bois (rouge). En effet, après coloration, les parois cellulaires de bois contenant de la cellulose et de la lignine produisent une fluorescence rouge (Bond et al., 2008). Les fibres de MDF non traitées par explosion de vapeur (Fig. 3), apparaissent majoritairement en jaune indiquant la co-localisation de la résine et du bois. Cela valide ainsi la méthodologie. De plus, l’analyse in situ fait apparaître une répartition hétérogène de la résine sur les fibres. Les fibres traitées par explosion à la vapeur (Fig. 4), sont caractérisées par une forte diminution de la fluorescence liée à la résine. Il est à noter qu’une fibre verte est toujours visible sur l’image. La répartition de la résine sur les fibres étant hétérogène, l’élimination de la résine l’est également. Ces images prouvent l’efficacité du traitement par explosion à la vapeur pour éliminer la résine UF des fibres de MDF.

Fig. 3 : Observation au microscope confocal de fibres de MDF colorées à la safranine

Fig. 4 : Observation au microscope confocal de fibres de MDF traitées par explosion à la vapeur et colorées à la safranine

Analyse infrarouge

Les fibres de MDF à différents stades du procédé ont été analysées par NIRS. La dérivée seconde a été calculée sur la zone du spectre présentant un intérêt et les différents échantillons soumis à une analyse en composante principale (ACP). Le graphique des individus de l’ACP est présenté sur la Figure 5.

Fig. 5 : Représentation 3D de l’analyse en composante principale des fibres de MDF

L’ACP permet de visualiser l’effet du traitement sur les fibres. Plus le nuage de points est resserré et plus le traitement est homogène. Les fibres issues des différents essais d’explosion...
à la vapeur sont discriminées des fibres témoins non traitées composées de fibres de MDF encollées (rouge) ou non encollées (bleu). De plus, l’impact des paramètres d’explosion de vapeur sur l’homogénéité des propriétés chimiques de la biomasse sont clairement visibles. L’analyse des loadings a permis d’attribuer la contribution des bandes azotes de la résine à la composante 3. Les effets du traitement par explosion à la vapeur sur les sucres et la lignine sont visibles sur la composante 1 et 2 respectivement.

Analyse granulométrique

Après tamisage, les fibres de MDF traitées par explosions à la vapeur sont réparties en trois catégories présentées en Figure 6. La répartition est à peu près équivalente entre les fines, les fibres moyennes et les fibres longues. Le réemploi des fibres pourra être adapté en fonction de leur taille.

![Fig. 6 : Répartition granulométrique des fibres de MDF traitées par explosion à la vapeur](image)

Conclusion et perspectives

L’explosion à la vapeur est une technique efficace pour rendre les fibres de MDF recyclables. Après traitement, le MDF est fragmenté et la majorité de la résine UF a été éliminé des fibres. La diminution de l’azote contenu dans l’urée est de 80% et les émissions de formaldéhyde sont supprimées. La réduction de la résine est validée par les observations des fibres au microscope. Les fibres pourront ainsi être valorisées avec des utilisations différentes en fonction de leur taille.

Références

AFNOR, 2016. NF EN ISO 12460-5.

Influence des conditions climatiques variables sur les propriétés mécaniques des structures en bois

UWIZEYIMANA Placide, PERRIN Marianne, EYMA Florent

Institut Clément Ader, IUT de Tarbes - Dépt GMP, 1 rue Lautréamont, 65000 Tarbes

placide.uwizeyimana@iut-tarbes.fr, marianne.perrin@iut-tarbes.fr, florent.eyma@iut-tarbes.fr

Mots clés: Ouvrages en bois ; poutres lamellé-collées ; cycles d’humidification/séchage ; essais de flexion ; caractéristiques mécaniques ; durabilité.

Contexte et objectifs

Dans le domaine de la construction, le bois présente souvent quelques limites comme sa résistance mécanique, la longueur des éléments structuraux, les dimensions transversales des poutres, etc. en comparaison des matériaux classiquement utilisés dans le génie civil (béton, matériaux métalliques, ...). Néanmoins, du fait de son caractère écologique et naturel, le bois reste un des seuls matériaux structurels renouvelables et favorables aux problématiques de développement durable actuelles. Ainsi, au cours de ces vingt dernières années, la technique de fabrication des éléments en bois lamellé-collé (LC) a permis de développer des poutres de grande longueur et de très grandes sections transversales (plus de 1,5 m de large) qui finalement ont permis de construire des ouvrages d’art (OA) pouvant supporter le trafic de charges élevées (Franke et al. 2018). Cependant, depuis quelques années, des problèmes de durabilité ont été constatés sur ces OA en bois LC, limitant ainsi leur développement (SETRA 2006 ; Pousette et al. 2017). Plusieurs pathologies comme la fissuration, la délamination des poutres, ainsi que les attaques fongiques et d’insectes ont été constatées sur ces ouvrages en bois (SETRA 2006). Ces pathologies conduisent à une dégradation des propriétés mécaniques du matériau et peuvent parfois provoquer la rupture des poutres LC. La principale condition d’apparition de ces pathologies est généralement l’humidité excessive (souvent locale) du matériau, et plus particulièrement les cycles climatiques d’humidification/séchage (H/S) entrainant des mécanismes de retrait/gonflement répétitifs. Par ailleurs, l’impact de ces cycles H/S sur les propriétés mécaniques des structures en bois LC reste peu connu. L’objectif de ce travail expérimental est donc d’étudier l’influence des cycles H/S sur la tenue mécanique des poutres LC. Cela permettra à l’avenir d’établir des modèles de prédiction de la durée de vie résiduelle des ouvrages en bois LC afin d’optimiser les opérations de maintenance préventive.

Travaux réalisés

Des éprouvettes en bois LC ont été exposées à des cycles d'humidification/séchage, puis l’évolution des propriétés mécaniques en flexion a été évaluée. De façon à réduire la durée des essais, les cycles naturels étant généralement longs (Franke et al. 2019), les conditions d'un cycle H/S accéléré ont été définies de manière à s’approcher au plus près de la réalité c’est-à-dire obtenir des taux d’humidités équivalents à ceux présents dans les OA en bois exposés en extérieur. D’après la littérature (Koch et al. 2016 ; Franke et al. 2019), dans un ouvrage répondant aux normes de conception et de fabrication actuelles, le taux d'humidité du bois varie généralement entre 10% et 30%. Ainsi, une première phase de notre travail a consisté à identifier un cycle accéléré représentatif des conditions réelles de variations d’humidité d’un OA en bois. Ce cycle H/S est composé de trois phases. La première phase consiste à humidifier les éprouvettes en enceinte climatique à 98% HR et 35°C jusqu’à la stabilisation de masse. Dans la deuxième phase, les échantillons sont immergés dans l’eau à
température ambiante pendant 24 heures et enfin, la dernière phase de séchage consiste à remettre les échantillons en enceinte climatique à 50% HR et 35°C jusqu’à la stabilisation de masse.

66 éprouvettes en bois de Douglas LC ont été fabriquées. Chaque éprouvette est composée de trois lamelles et mesure 480 mm de longueur (L) et 30 mm (R) x 30 mm (T) de section, dimensions définies suivant la norme NF EN 408 (AFNOR 2012). Parmi ces 66 éprouvettes, 60 sont utilisées pour la caractérisation mécanique en flexion au cours des cycles H/S et 6 servent d’échantillons témoins permettant à la fois le suivi des humidités et des déformations (Fig. 1). La méthode résistive par capteurs surfaciques intégrés a été utilisée pour le suivi d’humidité (Uwizeyimana et al. 2020) et des jauges pour le suivi de déformations (Uwizeyimana 2021). Au total, 17 cycles H/S accélérés ont été réalisés et les essais de flexion quatre-points ont été effectués au fur et à mesure en suivant le séquencement présenté dans le Tableau 1. La résistance à la rupture et le module d’élasticité en flexion ont été calculés après chaque séquence, selon la norme NF EN 408 (AFNOR 2012).

![Diagramme d'échantillon LC instrumenté](image)

Fig. 1 : Représentation d'un échantillon LC instrumenté avec des capteurs d’humidité et des jauges de déformations : (a) vues sur le plan TL et TR ; (b) vue sur le plan RL

<table>
<thead>
<tr>
<th>Nombre de cycles</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numéro de séquence</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Nombre d’éprouvettes</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Résultats expérimentaux et discussion

La Fig. 2 présente l'évolution de la résistance à la rupture en fonction du nombre de cycles. Dans l’ensemble, les 17 cycles H/S provoquent un affaiblissement moyen de 43,5 % de la résistance en flexion par rapport à des éprouvettes non soumises aux cycles H/S (soit une diminution moyenne de 44,8 MPa). L’analyse de la variance a permis de constater que les diminutions sont beaucoup plus marquées après le 1er cycle et après le 7ème. Cet affaiblissement de la résistance à la rupture peut s’expliquer par des modifications microstructurales du matériau bois sous sollicitations hydriques cycliques. En effet, au cours des cycles H/S, nous avons constaté quelques microfissurations (Fig. 3) dans le matériau qui ont provoqué des endommagements irréversibles et donc l’affaiblissement de la résistance à la rupture. Par ailleurs, d’après nos résultats, aucune influence significative des cycles H/S n’a été constatée sur le module d’élasticité.
Conclusions et perspectives
Les résultats expérimentaux ont montré que l’exposition du bois à des variations d’humidité avait une influence significative sur la résistance à la rupture en flexion alors qu’elle n’en avait pas sur le module d’élasticité. Qui plus est, le suivi des mécanismes de retrait/gonflement nous a permis de constater que les cycles H/S induisent des endommagements dans le matériau expliquant ainsi l’affaiblissement de la tenue mécanique des poutres LC. D’autres travaux sont actuellement en cours au laboratoire mais ils sont menés cette fois dans des conditions réelles, en extérieur. Cela permettra non seulement de valider la démarche scientifique utilisée lors des essais accélérés mais aussi de mettre en évidence l’impact des conditions climatiques naturelles sur la tenue mécanique des structures en bois. Par la suite, un modèle de prédiction de la durée de vie résiduelle des structures en bois sera établi afin d’optimiser les opérations de maintenance des ouvrages en bois.
Remerciements

Ce travail de recherche a été financé par la Région Occitanie, la Communauté d'Agglomération Tarbes-Lourdes-Pyrénées et l'Institut Universitaire de Technologie de Tarbes. Les auteurs souhaitent également remercier Emmanuel Laügt pour sa contribution au développement des appareils de mesure. Merci également à Pierre Larricq et Frédéric Leroy pour leur contribution dans la réalisation des montages d’essais.

Références

Caractérisation expérimentale du surdimensionnement mécanique des branches par rapport à leur poids propre.

VAN ROOIJ Arnoul1,2, GALERY Angélique2, GRIL Joseph1,2, BADEL Eric1

1Université Clermont-Auvergne, INRAE, PIAF F-63000 Clermont-Ferrand, France
2 Clermont Auvergne Université, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France

arnoul.van-rooij@inrae.fr

Mots clefs : biomécanique ; casse des branches ; rupture

Contexte et objectifs

Toute l’année, mais particulièrement pendant l’été, un phénomène encore incompris est observé : la chute imprévisible et soudaine de grosses branches. Cette ‘casse estivale’ est à l’origine de nombreux dégâts matériels et humains. Avec l’objectif de mieux comprendre ce phénomène, le travail de thèse consiste en partie à appréhender et modéliser le comportement mécanique des branches charpentières plagiotropes. Tout d’abord, nous proposons de considérer le problème du point de vue inverse : pourquoi les branches ne cassent-elles pas, du moins dans la très grande majorité des cas. Nous allons donc poser la question du surdimensionnement mécanique des branches par rapport à leur poids propre.

Le premier enjeu est alors de savoir si leur mode de développement leur permet d’atteindre une zone de sécurité avec un facteur assez important pour les mettre à l’abri de petites perturbations mécaniques ou, au contraire, si le dimensionnement réalisé les positionne « sur le fil du rasoir ». Le second enjeu est d’explorer la variabilité de ce surdimensionnement, tant au niveau inter-spécifique qu’au niveau de l’ontologie de la branche ou de l’environnement dans lequel elle se développe (venteux, etc). Nous présentons ici une tentative de caractérisation expérimentale simple de ce surdimensionnement mécanique.

La construction de l’expérience ainsi que son analyse se place dans le formalisme de la résistance des matériaux. L’expérience consiste à scier progressivement une branche par le dessus. Lorsque la branche montre des signes de rupture, on arrête le sciage. La branche est alors coupée en aval de la section sciée. Cette dernière est ensuite récupérée et analysée. La Fig. 1 représente une branche (amandier) coupée à 90% de sa section et qui tient malgré la charge de son propre poids ; un bel exemple de surdimensionnement.

L’objectif premier de l’expérimentation est d’avoir un ordre de grandeur global du niveau de surdimensionnement via la définition et le calcul d’un « indice de surdimensionnement ». L’objectif second est de pouvoir quantifier une éventuelle variation de la sensibilité à la rupture entre les saisons. D’autres facteurs de variations de ce comportement mécanique seront aussi étudiés ; parmi eux l’essence, l’âge de la branche, son diamètre ou encore son angle d’insertion.
Matériels et méthodes

La campagne a commencé en 2020 et est toujours en cours de réalisation. Après sciage d’une branche d’un arbre en configuration « isolé », l’opérateur mesure sa masse, la position de son centre de gravité par rapport au lieu de coupe, sa longueur ainsi que son angle d’insertion (angle entre l’horizontale et le segment insertion-centre de gravité). Le matériel utilisé est simple : une scie, un peson pour la masse, un inclinomètre pour l’angle d’insertion et un mètre ruban pour les longueurs. Puis une photo de la section (voir sur la figure 2) est prise à l’endroit du trait de scie.

Une première campagne a été menée au printemps 2020 sur une vingtaine de branches de chêne (*Quercus robur*) ; puis une seconde au printemps 2021 sur une vingtaine de branches de pin (*Pinus pinae*). Plus récemment, l’expérimentation s’est étendue à une vingtaine de branches de peuplier (*Populus I214*). L’année prochaine, une extension de la campagne à d’autres essences et à un plus grand nombre d’échantillon est prévu. La quantité et la diversité de l’échantillonnage prévu dépendra du matériel végétal à disposition.

Le surdimensionnement se calcule comme le rapport des contraintes s’exerçant sur la partie section totale de la branche par rapport aux contraintes s’exerçant sur la partie « résiduelle » (partie non coupée) au moment de la rupture. Toujours dans le formalisme de la résistance des matériaux, et en ne tenant pas compte des contraintes de croissance, ce surdimensionnement s’écrit comme suit :

\[\eta = \frac{\sigma_{res}}{\sigma_{tot}} = \frac{l_{res}}{l_{tot}} \cdot \frac{R}{L_b} \]

Avec \(l_{res} \) le moment d’inertie de la section résiduelle, \(l_{tot} \) le moment d’inertie de la section pleine, \(R \) le rayon de la section et \(L_b \) la distance du centre de gravité de la section résiduelle au bas de la section.

Les calculs de section ont été effectués sur le logiciel ImageJ et son module BoneJ. La procédure a été développée et mise en place dans le cadre d’un stage court de Polytech Clermont durant l’été 2021.

Résultats et discussion

Les résultats sont présentés dans les Fig. 3 et Fig. 4. A ce stade de l’étude, les premières conclusions suivantes peuvent être tirées :

Figure 2 : Photo d’une section de branche. La surface hachurée représente la partie sciée. La partie inférieure représente la portion résiduelle de section au moment de la rupture.
Les branches étudiées semblent très surdimensionnées par rapport à leur poids (surdimensionnement moyen compris entre 5 et 15, ce qui signifierait que les branches peuvent supporter de 5 à 15 fois leur poids suggérant, si le dimensionnement est d’origine mécanique, que celui-ci répond à d’autres facteurs ; comme par exemple le vent).

Il ne semble pas y avoir d’influence de l’essence ou la géométrie de la branche sur les indices de surdimensionnement. Cela signifie que quelle que soit sa dimension, une branche ne changerait pas, ou peu, de surdimensionnement.

Fig. 3 : Représentation du taux de surdimensionnement en fonction des diamètres des branches des essences considérées

Fig. 4 : Représentation du surdimensionnement en fonction de l’angle d’insertion des branches des essences considérées
Il faut cependant prendre ces premiers résultats avec précaution : l’échantillonnage actuel est petit, comme en témoigne la Fig. 3. En particulier, certaines classes de diamètres sont par exemple plus représentées que d’autres. Ce constat est aussi applicable pour les angles d’insertion (Fig. 4) dont la gamme est ici restreinte. Il est donc primordial d’étendre l’échantillonnage en terme d’essences et de type de branches. A terme il est aussi prévu de réaliser ces expérimentations à différentes saisons afin d’étudier un éventuel effet de l’état physiologique de la branche.

La variabilité selon des critères de croissance tels que l’âge ou encore le nombre d’axes de rang inférieur présents sur la branche va être également investiguée. L’objectif finalisé est alors de trouver des critères structuraux mesurables permettant de caractériser ce facteur de surdimensionnement.

Les hypothèses dans lesquelles on se place sont critiquables. Tout d’abord, l’effet de d’entaille est négligé. De même, le champ de précontraintes internes qui va être libéré par la coupe n’est pas pris en compte. C’est une hypothèse importante, lorsque l’on sait que la branche présente un champ de contraintes très particulier, lui permettant de garder son orientation et une stabilité mécanique sur le long terme [1]. Sous certaines hypothèses, il serait alors possible de l’estimer a posteriori au moyen de corrélations avec les propriétés du bois [2]. Des mesures de déformation de maturation sur des branches pourraient être effectuées, en périphérie ou en volume. Un projet de modélisation intégrant ces champs de précontraintes ainsi que la redistribution du torseur de flexion sur la section restante est en cours.

Remerciements :
Les auteurs remercient le CNRS pour le soutien financier qu’il apporte au projet de thèse.

Références :
2. Bernard Thibaut, Joseph Gril. Tree growth forces and wood properties. 2020. HAL, hal-02984734, ver. 4, peer-reviewed and recommended by Peer community in Forest and Wood Sciences. https://hal.archives-ouvertes.fr/hal-02984734.
Valorisation durable des arbres de Noël comme fibres de renforts pour des applications biocomposites

VIRETTO Amandine¹, BRANCHEIAU Loïc¹, TAGUET Aurélie², O’AZAGHINE Belkacem², CORN Stéphane³ & BENEZET Jean-Charles²

¹UR BioWooEB, CIRAD, 34398 Montpellier, France
²PCH, IMT-Mines Alès, 30100 Alès, France
³LMGC, IMT-Mines Alès, Univ. Montpellier, CNRS, 30100 Alès, France

amandine.viretto@cirad.fr

Mots clefs : Déchets verts, Arbres de Noël, Eco-conversion, Fibres Lignocellulosiques, Biocomposites

Contexte

La prise de conscience à l’échelle mondiale, comme à l’échelle locale, de l’impact de nos sociétés et de notre consommation sur l’environnement (pollution des sols et des océans, réchauffement climatique, …) pousse les industriels, les chercheurs et les acteurs locaux du développement économique à agir. Ainsi, les industriels cherchent à orienter leur production selon une approche plus durable afin de limiter le poids de leur activité sur notre environnement. Il en est de même pour les collectivités qui cherchent de nouvelles solutions pour diminuer l’empreinte carbone de leurs habitants. Une manière de réduire l’impact environnemental de nos activités est la réutilisation des biens et la valorisation des déchets/sous-produits. La valorisation durable des déchets solides lignocellulosiques comme fibres de renforts dans les matériaux biocomposites apparaît comme une des alternatives aux matériaux composites pétrosourcés. De nombreux travaux ont porté sur la valorisation de déchets (Viretto 2021) ou de sous-produits lignocellulosiques (Berthet 2015, Lammi 2019, David 2020) en tant que charges de renforts dans des matériaux biocomposites. Les solutions développées se sont montrées aussi performantes que des matériaux composites conventionnels tout en permettant d’appréhender les problématiques d’éco-conception et de gestion de la fin de vie des matériaux.

Chaque année en janvier, après les fêtes de fin d’année, les trottoirs de nos villes sont jonchés de sapins de Noël. Même s’il s’agit d’une pollution ponctuelle, il n’en demeure pas moins que la gestion de la fin de vie de ces arbres constitue une problématique pour les collectivités. En France, plus de six millions d’arbres sont vendus pour les fêtes (Kantar 2020), constituant une biomasse saisonnière non négligeable. Les deux essences d’arbre de Noël les plus répandues en France sont l’épicée commun, *Picea abies* et le sapin de nordmann, *Abies nordmanniana* (Kantar 2020). Lorsque ces arbres sont collectés et « recyclés », ils sont généralement broyés pour être utilisés en paillis ou en bois énergie.

L’objectif de ce projet est de proposer une alternative de valorisation durable de cette biomasse pour des applications matériaux biocomposites entièrement biosourcés et biodégradables.

Matériel et Méthode

La biomasse étudiée est constituée d’arbres de Noël (tronc, branches et aiguilles) collectés en janvier 2021 par Alès Agglomération (département du Gard). Le biopolymère utilisé est le PLA, acide polylactique (4043D NatureWorks).

Deux lots représentatifs de l’épicée commun et du sapin de nordmann, constitués de trois arbres chacun ont été pré-broyés puis séchés à température ambiante pendant un mois. Ils ont ensuite été broyés plus finement grâce à un broyeur à couteaux SM300 (Retsch) avec un premier
passage sur une grille à 8mm puis sur une seconde grille à 4mm. Un tamisage mécanique a été réalisé afin d’estimer la taille des fibres à l’aide d’une tamiseuse Octagon 200 cl (Endecotts).

L’analyse de composition biochimique des fibres a été réalisée suivant un protocole adapté à partir des normes ASTM (D1102-84, D1103-60, D1104-56, D1106-96). La stabilité thermique des fibres a été évaluée par analyse thermogravimétrique Setsys Evolution (Setaram) suivant un protocole de chauffe de 30°C à 900°C à 10°C/min sous atmosphère inerte. La densité vraie a été mesurée à l’aide d’un pycnomètre à gaz AccuPyc 1330 (Micrometrics) sous flux d’hélium.

Les formulations ont été réalisées au mélangeur interne R3000 (Haake Polylab System) à 170°C et 60rpm avec un temps de séjour de 10min en faisant varier le taux de fibres jusqu’à 80wt% (en pourcentage massique). Les fibres et le PLA ont été étuvés au préalable à 60°C pendant 24h. Les formulations obtenues ont été mises en forme à l’aide d’une presse hydraulique chauffante (100T Darragon) sous forme de plaques 10x10x0.4cm³ à 170°C avec une compression progressive jusqu’à 100bars. Les plaques ont ensuite été découpées en barreaux de 1cm de large pour réaliser différents essais. La mesure de la densité vraie des biocomposites a été faite également à l’aide du pycnomètre à hélium afin de déterminer les taux de porosité. La résistance au choc a été testée par des essais Charpy sur des barreaux entaillés à l’aide d’un Mouton Charpy (Zwick) avec une énergie fixée à 7,5J.

Premiers Résultats

Caractérisations des fibres

Les fibres résultant des différentes étapes de broyage ont été caractérisées du point de vue de leur composition biochimique, de leur stabilité thermique, de leur densité vraie et de leur distribution en taille des particules.

L’estimation de la distribution en taille des particules a été obtenue par tamisage mécanique, enchaînant six tamis de taille décroissante (3,15mm, 2mm, 1,6mm, 0,8mm, 0,4 mm et 0,25mm). La représentation graphique a démontré une allure de gaussienne centrée autour de 0,8mm pour les deux types de fibres. Toutefois, nous pouvons souligner une légère différence de répartition en taille : les fibres de Nordmann sont plus nombreuses dans les classes de tailles supérieures à 0,8mm (wt%Nordmanna2mm = 12,97 vs wt%Epicea2mm = 5,54) alors que les fibres d’Epicea sont plus nombreuses dans les classes de tailles inférieures à 0,8mm (wt%Epicea<0,25mm = 10,59 vs wt%Nordmanna<0,25mm = 7,31).

L’analyse de la composition biochimique des fibres a été réalisée par extractions successives dont les résultats obtenus sont résumés dans Tab. 1. Des différences sont observées entre les deux types de fibres notamment au niveau des taux de lignine et de cellulose. Le taux de lignine est plus important pour les fibres de Nordmann (%LignineNordmann = 38 vs %LignineEpicea = 25) alors que le taux de cellulose est inversement plus important pour les fibres d’Epicea (%CelluloseEpicea = 38 vs %CelluloseNordmann = 25). Un taux de lignine plus important pour les fibres de Nordmann pourrait expliquer les tailles plus importantes observées au tamisage, étant donné que la lignine est reconnue comme étant le composé le plus récalcitrant de la paroi cellulaire végétale et donc, le plus résistant à la dégradation chimique, biologique et mécanique (Barakat 2013).

La stabilité thermique des fibres a été évaluée par ATG et a montré peu de différences entre les fibres d’Epicea et de Nordmann. Il est important de souligner que les températures de début de dégradation (Tonset Epicea = 189°C et Tonset Nordmann = 202°C) sont supérieures à la température de mise en œuvre (Tmelt = 170°C).
Les densités vraies mesurées ne présentent pas de différences significatives entre les deux types de fibres ($d_{\text{Epicea}} = 1,287 \pm 0,003$ et $d_{\text{Nordmann}} = 1,275 \pm 0,007$).

Tab. 1 : Caractéristiques physico-chimiques des fibres d’Epicea et de Nordmann obtenues après broyage

<table>
<thead>
<tr>
<th>Composition biochimique</th>
<th>Stabilité thermique</th>
<th>Densité vraie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3 mesures)</td>
</tr>
<tr>
<td>Extract. (%) Hémicell. (%) Cellulose (%) Cendres (%)</td>
<td>T_{onset} (\degreeC)</td>
<td>$T_{\text{deg max}}$ (\degreeC)</td>
</tr>
<tr>
<td>Epicea</td>
<td>13 25 20 38 4</td>
<td>189 339</td>
</tr>
<tr>
<td>Nordmann</td>
<td>13 38 21 25 3</td>
<td>202 340</td>
</tr>
</tbody>
</table>

Formulations des biocomposites PLA-fibres de Nordmann

Un taux croissant de fibres de Nordmann a été ajouté progressivement au PLA en voie fondue jusqu’à atteindre la limite de processabilité. A 80wt% de fibres, il n’était plus possible d’obtenir un compound présentant suffisamment de matrice polymère pour assurer la cohésion du système. Les formulations réalisées sont répertoriées dans Tab. 2. Des plaques 10x10x0.4 cm3 ont été obtenues par thermo-compression pour chacune des formulations, puis découpées en barreaux en fonction des essais de caractérisations.

Caractérisations des biocomposites PLA-fibres de Nordmann

Les biocomposites ont été caractérisés du point de vue de leur densité afin d’évaluer leur porosité. Le taux de porosité totale est important autour de 20 – 30 % comme nous pouvons le voir dans Tab. 2. Il est intéressant de souligner que le taux de porosité fermée mesuré est très faible lorsqu’il n’est pas nul. Ceci n’est pas aberrant étant donné que les fibres sont majoritaires dans le système, formant un réseau de fibres laissant une part importante de porosités ouvertes, le PLA n’est pas présent en quantité suffisante pour assurer son rôle de matrice et d’imprégnation des fibres.

La résistance au choc a été évaluée par des essais Charpy sur des barreaux entaillés qui permettent de déterminer l’énergie consommée par la rupture d’un échantillon du matériau considéré. Les énergies mesurées pour les différentes formulations sont présentées dans Tab. 2. Nous observons une diminution de la résistance au choc lorsque le taux de fibres augmente. Il peut également être souligné que la valeur de l’énergie absorbée lors du choc se stabilise autour de 1,8 kJ/m2.

Tab. 2 : Densités et résistance au choc des biocomposites PLA-fibres de Nordmann

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Densité apparente</th>
<th>Densité vraie</th>
<th>Porosité Totale (%)</th>
<th>Porosité Fermée (%)</th>
<th>Porosité ouverte (%)</th>
<th>α_{N} (kJ/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5 mesures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5 mesures)</td>
</tr>
<tr>
<td>50PLA/50Nordmann</td>
<td>1,0119</td>
<td>1,2387</td>
<td>20,7</td>
<td>2,4</td>
<td>20,7</td>
<td>2,5 ± 0,5</td>
</tr>
<tr>
<td>37PLA/63Nordmann</td>
<td>1,0925</td>
<td>1,2518</td>
<td>14,2</td>
<td>1,5</td>
<td>12,7</td>
<td>2,1 ± 0,4</td>
</tr>
<tr>
<td>30PLA/70Nordmann</td>
<td>0,8758</td>
<td>1,2875</td>
<td>30,7</td>
<td>0</td>
<td>30,7</td>
<td>1,8 ± 0,1</td>
</tr>
</tbody>
</table>
Conclusions et perspectives
Des premiers résultats intéressants ont été obtenus dans le cadre de cette étude préliminaire sur la valorisation des arbres de Noël comme fibres de renforts pour des applications biocomposites. Des matériaux cohésifs ont été obtenus jusqu'à des taux de fibres de 80% dont les propriétés mécaniques sont intéressantes pour des applications matériaux à faibles exigences. À ce stade, beaucoup de questions ont été soulevées et seulement peu de réponses ont pu être apportées. Tout un travail reste donc à mener pour mieux comprendre et valoriser ces matériaux. Nous sommes donc intéressés à poursuivre ce travail dans le cadre d'un projet collaboratif de plus grande envergure.

Remerciements
Ces premiers résultats ont été obtenus au cours d’un exercice pédagogique avec des étudiants de 2ème année de l’IMT-Mines Alès, Salma Daoufa et Ryan Jay Carino. De plus, les auteurs souhaitent remercier Alès Agglomération qui nous a fourni la matière première et qui est fortement intéressée pour poursuivre son implication dans le cadre d’un projet collaboratif.

Références
Moisture effects on 4-point bending behavior of GFRP-balsa sandwich by acoustic emission and infrared thermography

Yuan Wu¹, Marianne Perrin¹, Marie-Laetitia Pastor¹, Pascal Casari² and Xiaojing Gong¹

¹Institut Clément Ader (ICA), CNRS, UMR 5312, Université de Toulouse, 65000 Tarbes, France. E-mail: marianne.perrin@iut-tarbes.fr
²Institut de Recherche en Génie Civil et Mécanique, GeM-E3M, CNRS, UMR 6183, Université de Nantes, 44606 Saint Nazaire, France. E-mail: pascal.casari@univ-nantes.fr

Keywords: GFRP-balsa sandwich; Moisture effects; Acoustic Emission; InfraRed Thermography.

1. Introduction

Composite sandwich structures are widely used for civil, aeronautical and marine applications (Wu Y et al., 2021) due to their good stiffness-to-weight ratio. It consists of two thin but stiff skins bonded to the center thicker but lighter core, thus, skins mainly provide bending stiffness and strength, while the core mainly carries shear stresses. Among various core materials, balsa wood has been widely utilized as the light bio-based core in sandwich structures in construction and marine fields (Shi H et al., 2018), bonded with Glass Fiber Reinforced Polymer (GFRP) skins. However, few researches have been focused on balsa cored sandwich, due to the complex anisotropic properties of wood material and strong dependency of its mechanical performance on density (Da Silva A et al., 2007). Furthermore, balsa wood shows high sensitivity to moisture, raising the need to characterize moisture effects on mechanical properties of balsa sandwich.

In this work, Non-Destructive Testing (NDT) techniques (Munoz V et al., 2016), including Acoustic Emission (AE) and InfraRed Thermography (IRT), were coupled to investigate the bending behavior and damage mechanisms of GFRP-balsa sandwich structures. Post-mortem examinations by microscope were also compared with NDT observations to characterize the skin and core damages, separately.

2. Materials and methods

GFRP-balsa sandwich specimens with special triple dog-bone shape (see Fig. 1. (a)) were designed, to easily observe the possible skin damages in pure bending zone 1, as well as core damages in bending and shear in zone 2, monitored by IRT and AE simultaneously. All sandwich specimens have two identical symmetrical skins made of 3-layer GFRP balanced fabric/epoxy oriented in the warp direction (Ref: Sicomin glass twill 3190 with 190 g/m², with 50% fiber volume fraction). The core is made from balsa wood (Ref: BALTEK SB.100). Material parameters of the skin and balsa core can be referred to Wu Y et al., 2021.

Five wet GFRP-balsa sandwich specimens were firstly dried in the oven under 40 °C and then immersed into water under room temperature to get saturated moisture content (MC) of 120% after nearly 4 months. And then, wet and dry sandwich specimens were tested under the same loading condition, controlled by displacement rate imposed at 2 mm/min (ASTM C393) using a MTS machine with load cell of 100 kN (see Fig. 1). The loading span (L) is 80 mm, and the support span (S) is 240 mm. Two AE wideband sensors with a sensor distance of 180 mm were fixed symmetrically on the upper surface of the specimen (see Fig. 1. (b)), to monitor all the possible damages during bending tests. The threshold was set by 28 dB. The pre-amplifier is 40 dB, and the analog-filter is in the range of 20 kHz -3 MHz. Peak Definition Time (PDT)
is 30 μs, Hit Definition Time (HDT) is 100 μs and Hit Lockout Time (HLT) is 300 μs. All the parameters have been validated by preliminary tests in Wu Y et al., 2021. IRT system was set to mainly monitor the upper skin damages in zone 1 (see Fig. 1. (c)), including IR camera (FLIR X6801sc, with a resolution of 608 × 312 full images at 520 frames per second) and acquisition computer with ResearchIR Master software.

Fig. 1: 4-point bending test configuration monitored by IRT and AE

3. Results and discussions

3.1. Moisture effects on static 4-point bending behavior of GFRP-balsa sandwich

Force/Displacement curves of wet (MC=120%) and dry sandwich specimens were compared in Fig. 2. All the specimens show a similar linear behavior before the final sudden rupture. Compared to dry sandwich, the average bending stiffness of wet specimens at loading points shows about 19% decrease, from 108 N/mm (±3 N/mm) to 88 N/mm (±3 N/mm). The average fracture load of wet ones (730 N±37 N) is about 35% lower than that of dry ones (1115 N±100 N). It proves that moisture has caused obvious decrease of bending stiffness and strength.

Fig. 2: Moisture effects on static 4-point bending behavior of GFRP-balsa sandwich

Post-mortem examinations of zone 1 using microscope VHX-7000 (100 X) were investigated for both wet and dry specimens. Fig. 3. (a) - (b) show the final upper skin surfaces of dry and wet sandwich, while Fig. 3. (c) - (d) show the side skin/core surfaces. There are some fiber/matrix extensions on the skin surface, released by very rapid high energy of dry sandwich (see Fig. 3. (a)), but this phenomenon could not be seen on wet specimens. In Fig. 3. (c) - (d), skin/core debonding crack of dry specimen is longer and wider than that of wet one, but skin delamination of wet specimen is more obvious. Core cracks of dry specimen are more severe in Fig. 3. (d), while dry specimen almost has no core damage. So, moisture absorption could cause more severe skin delamination and core damages, but less severe skin/core debonding and fiber breakage.

(a) Skin damages of dry specimen

(b) Skin damages of 120% MC specimen
3.2. Damage initiation detection by AE

AE amplitude is the most often used AE time parameter (Perrin M et al., 2019) to be correlated with damage mechanisms of composite and wood structures. Fig. 4 shows that AE amplitude accumulation of wet and dry specimens experiences a similar tendency to Force/Time curve, which increases intensely just before the final fracture load. The highest amplitude values of dry and wet specimens are 98 dB at 353 s and 92 dB at 257 s. Highest AE amplitude higher than 90 dB could be fiber breakage (Munoz V et al., 2016) of composite laminates. It could indicate that fiber breakage of wet specimens occurs for lower stress level compared to dry ones.

AE hits appearing before the onset of skin delamination are lower than 60 dB for all specimens, which could be dominated by resin cracking (Munoz V et al., 2016) of the skin. Hits between 30-60 dB increase for wet specimen at the beginning of the tests, combined with microscope observations, these signals may be caused by small core cracks, but this requires further experimental investigations.

3.3. Damage initiation and evolution observations by IRT

2D heat diffusion equation (see Eq. 1) was used to determine the heat source field during the damage evolution process, by considering the dependence of temperature data on time and space simultaneously (Munoz V et al., 2016). The heat source s contains the irreversible mechanical dissipation d_{irr} and the reversible thermoelastic coupling s_{the} between the temperature and strain; $\Delta T = T - T_0$, which is the temperature difference; T_0 is the average temperature of the first ten IRT images; T is temperature at time t; ρ is density; C is specific heat; k is the thermal conductivity coefficient. Correlation between movement of the vertical pixel in IRT temperature images and true displacement of the specimen was introduced into MATLAB program to improve the accuracy of post-processing of thermal images by $\Delta T=T_{1-1}+T_{2-1}+\ldots+T_{n-1}$.

$$\rho C \frac{\partial T}{\partial t} - k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) = s$$ \hspace{1cm} (1)

The cumulative irreversible damage D_i can be calculated by Eq. (2):

$$D_i = \int_0^1 d_i \, dt$$ \hspace{1cm} (2)
Fig. 5-6 show the cumulative heat source images during the tests. What’s interesting was that some small heat source extensions appearing in the air in red circles around the specimen have been captured by IR camera in Fig. 5. (b). It should be caused by dynamic effect of higher energy released very rapidly, consistent with microscope observations in Fig. 3. (a). In Fig. 6. (a)-(c), IRT could observe more clearly the damage initiation point and propagation path of wet sandwich. It shows that wet and dry sandwich experience a similar damage evolution process, but skin cracks of dry sandwich (1.04 s) propagate much faster than the wet one (1.55 s). Fig. 5. (c) and Fig. 6. (c) show the final skin cracks at the end of tests, showing good agreement with the damage photos in Fig. 5. (d) and Fig. 6. (d).

4. Conclusions

In this work, post-mortem microscope observations were correlated with AE and IRT monitoring during 4-point bending tests to investigate moisture effects on damage mechanisms of GFRP-balsa sandwich. It was found that moisture absorption could cause the reduction of bending stiffness and strength of the sandwich specimen, as well as the more severe GFRP skin delamination and balsa core damages. However, skin/core debonding and fiber breakage of wet sandwich were less severe. These conclusions contribute to the application of balsa wood as core materials in composite sandwich structures in aviation and marine industries.

References

TANNIN-BASED SELF-BLOWING BIOMASS FOAM BY HUMIS SUBSTITUTING FORMALDEHYDE

Xinyi Chen1, Antonio Pizzi1*, Emmanuel Fredon1, Christine Gerardin2

1 LERMAB, University of Lorraine, 27 rue Philippe Seguin, BP 1041, 88051 Epinal, France
2 LERMAB, University of Lorraine, Boulevard des aiguillettes, 54000 Nancy, France

Abstract: Ambient temperature self-blowing tannin-furan foam has been prepared by substituting a great part, even a majority of furfuryl alcohol with humins, a poly-furanic material derived from the acid treatment at high temperature of fructose. This foam was observed by scanning electron spectrometry (SEM) which shown different cell structure while the foaming process under a different temperature. The incorporation of humins resulted in enhanced mechanical property and increased bulk density. The thermal conductivity was measured and showed a lower value than other materials for green building. Furthermore, this bio-furanic foam exhibited outstanding fire resistance while undergoing combustion. This result was supported by a higher limiting oxygen index (LOI) value. Therefore, this green foam has a great potential for building energy saving, heat preservation, and fire safety as well.

Key words: Tannin-based foam; Self-blowing; Humins; Flame retardancy

Introduction

Tannin-based foam have been reported many years and attracted by serval researchers. But, the toxic crosslinker formaldehyde was the necessary chemical in the traditional formulation. Therefore, how to prepare a bio-based tannin foam without formaldehyde utilization is a hot-field in tannin-based foam researching.

Materials and Methods

Materials: Mimosa tannin (Acacia mearnsii, De Wild) bark extract and furfuryl alcohol (FA) were supplied by Silva Chimica (St. Michele Mondovi, Italy). Poly-furanic humins were laboratory prepared by the acid treatment of fructose at the Dept. of Chemistry, Université de la Cote d’Azur, Nice. p-Toluene sulfonic acid (p-TSA) was obtained from Sigma Aldrich (St. Louis, MO, USA).

Tannin foam preparation: The bio-sourced foams were prepared by the following steps. 15 g tannin extract powder was mixed with 5 g furfuryl alcohol thoroughly. After that, about 5.9 g of dark humins powder was added into the above mixture, stirred, and mixed well. Then, 1.5 g deionized water was added into the mixture and stirred intensely for 10 s. A mixture solution contains 6.0 g p-TSA and 1.5 g DE was put into the mixture and then keep stirring about 20 s to obtain a homogenous slurry. For the foaming under room condition, after 60-120 s, a soft, black tannin-based foam was obtained and then put it into oven at 80\textdegree C for aging 24 h. Another group was that the mixture slurry was obtained and put into oven under 80\textdegree C immediately for quick initiate the foaming process and then aging for 24 h.

Foam characterization: The apparent densities of the foams prepared were checked according to the ASTM D1622-03 standard. The foam morphology was observed by scanning electron microscopy (SEM, Hitachi TM-3000, Milexia, Paris, France) under the acceleration voltage of 15 kV. The compression strengths were carried out by using the universal testing machine (Instron 3300, Elancourt France). Thermal conductivity experiments were performed under ambient conditions by using a YBF-2 apparatus (Dahua Ltd., Hangzhou). Limiting oxygen index (LOI) measurements of samples were conducted based on the China National Standards
RESULTS AND DISCUSSION

The fabrication process of bio-sourced tannin-based foam with a high biomass content derived from natural lignocellulosic biomass-derived products is schematically illustrated in Figure 1. This formulation avoided the application of toxic formaldehyde, which improved the manufacturing safety and environmental-friendly nature than the traditional tannin-based foam. There are several simultaneous reactions occurring, and they contribute to the expansion of the foams and their stability of crosslinking. The furfuryl alcohol self-condensation exotherm accelerated the evaporation of the blowing agent, resulting in a volume expansion of the resultant foam. Tannin not only links to the furfuryl alcohol, but also reacts with the aldehyde groups of the humins (it probably structure is shown in Figure 2). Thus, the three-dimensional structure of the foams was obtained and maintained also by the additional crosslinking engendered by the interaction between tannin and humins.

The apparent density of tannin-based foams was shown in Table 1. Compared with reference tannin-formaldehyde foam [1,2], the tannin-humins have a higher bulk density. This is attributed that the high viscosity of humins and a well reaction crosslinking between tannin and it. However, the foaming process could be impeded by the high viscosity of the foaming mixture. Thus, the higher density can be obtained in this formulation.

Other, the foaming temperature have a significant effect on foam density and cell structure (Figure 3). The foam has a higher density under room condition while a lower density has been obtained by put the foaming mixture into oven under 80°C. This is due to the oven provided more foaming energy. The reason for this difference density is main attributed to the more vigorous evaporation of blowing agent and water at 80°C expanding more volume of foaming buck.

The two tannin-humins were expanded and hardened one at ambient temperature (23°C, Figure 3 (a) and (b)) and the other at 80°C (Figure 3 (c) and (d)) to see how preparation temperature influenced the morphology of the finished foams. The differences observed by scanning electron microscopy (SEM) were indeed quite major as can be seen in Figure 3. The foam prepared at ambient temperature presented a closed cells structure while the one prepared at 80°C clearly presented an interconnected cells structure, with several open pores and cell walls breaks. The reason for this difference is due to the more vigorous evaporation of water at 80°C breaking weaker cell wall sites in the structure. This does not occur at ambient temperature. This means that a foam of this type prepared at ambient temperature, once stabilized, is more suitable for thermal isolation applications, while when prepared at 80°C it more suitable for acoustic insulation [3].

Figure 1. Schematic illustration of the fabrication of tannin-based bio-sourced foam.

Figure 2. The probably structure of humins
Table 1 Some parameters of tannin-humins foams

<table>
<thead>
<tr>
<th>Samples</th>
<th>Density (g/cm³)</th>
<th>Compressive strength (KN)</th>
<th>Thermal conductivity (W/mK)</th>
<th>LOI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. sample</td>
<td>0.08-0.12</td>
<td>0.08-0.25</td>
<td>0.044</td>
<td>Around 29</td>
</tr>
<tr>
<td>23°C</td>
<td>0.24</td>
<td>1.58</td>
<td>0.057</td>
<td>37.58</td>
</tr>
<tr>
<td>80°C</td>
<td>0.20</td>
<td>1.38</td>
<td>0.061</td>
<td>35.84</td>
</tr>
</tbody>
</table>

Figure 3. The morphological characteristics of tannin-humins foams. (a) and (b) is the foam obtained under 23°C; (c) and (d) is the foam obtained under 80°C

Figure 4. The compression curves of tannin-humins foams

These SEM observations explains the results of compression strength observed in Figure 4 and derives from the results shown in Table 1. Thus, in Figure 4 the curves of stress strain of the two kinds of foams indicate higher compression strength as a function of strain for both the foam with the low and higher foaming temperature. This observation infers that, if moderately higher foaming/curing temperatures are used, humins would most likely participate to a greater measure to the strength of the cell walls, but would also most likely present a predominant interconnected cells structure. Even though the foams obtained under 80°C has a higher compression strength but still lower than the foam got from room condition. Certainly, the one of reason is that such higher strength value is contributed to their high bulk density. In addition, the pores on the cell wall destroyed the structural integrity of the cell wall so that decreased their capacity of load. Another, the small number of cell structure in a unit area because of it has a bigger cell structure which resulting in a lower load capacity in the unit area. Therefore, the compression curve of foam obtained under 80°C exhibited a lower value than the other one.

The thermal conductivity of the tannin-humins foams were evaluated by the hot plate method and the results are shown in Table 1. These two kinds of samples are displayed a similar thermal conductivity, nearly 0.060 W/m·K, higher than from other studies of tannin-furanic-formaldehyde foams [4]. This result probably is attributed to changes in foams density, in general, the higher density will have a higher thermal conductivity [5,6]. The foaming temperature has a great influence on the thermal conductivity. But this result is related to the cell structure of foams formed by different temperatures. Clearly, foam obtained under room temperature has a smaller value because of its closed cell-structure. Therefore, as abovementioned, this all closed-cell wall foam can be applied to insulation thermal materials for building. However, such low thermal conductivity value still excellently lower than other kinds of insulation materials for green building.

The flame resistance of the tannin-humins foams was evaluated by measuring the limiting oxygen index (LOI) and the results are shown in Table 1. As expected, the LOI of a tannin-
humins foams, i.e., the research sample in this work, is around 36%, indicating it is a flame-retardant material [4]. The foam sample obtained under room temperature had higher LOI values, is 37.58%. This effect can be ascribed to the closed-cell morphology structure of it. SEM images (Figure 3) show that closed-cell structures with many “pores” are in the control sample obtained under 80°C. The air can then circulate in the foam interior through these opened pores, thereby providing a more suitable environment for combustion [4]. Conversely, the tannin-humins foam obtained under room temperature relatively closed-cell structures block the air exchange between the inside and outside of the foam cells, acting as a flame retardant.

CONCLUSIONS AND OUTLOOK
A green, high biomass, ecofriendly and flame retardant tannin-humins foam was prepared and evaluated in this research. The main results are exhibited as following:
(1) One with high biomass content tannin-humins foams was reported. And the manufacturing temperature has a strong influence on the structure of tannin foams.
(2) A well crosslinking reaction condition between tannin and humins which yielding a closed foam structure under room temperature.
(3) This kind of foam has an improved mechanical property, such as the compression strength can reach as high as >1 MPa.
(4) A lower thermal conductivity has obtained which was about 0.060 W/m·K. This value lower than the most of building applied thermal insulation materials. Most importantly, this kind of foam has an excellently fire resistance. This kind of foam obtained from high biomass content formulation, and it is a potential route for forestry and biorefinery waste valorization. Such sustainable tannin-humins biomass foam has thus a great potential for industrial application and green building thermal insulation.

ACKNOWLEDGMENTS
This work was supported by Scholarship from China Scholarship Council (CSC). The LERMAB is supported by a grant of the French Agence Nationale de la Recherche (ANR) as part of the laboratory of excellence (LABEX) ARBRE.

References
Study of the wettability and color modification of torrefied wood

ZHANG Bengang*, Anélie PETRISSANS1, Baptiste COLIN1, Mathieu PETRISSANS1
1 Université de Lorraine, Inrae, LERMAB, 88000, Epinal, France
*bengang.zhang@univ-lorraine.fr

Key words: Color, heat treatment, mass loss, pyrolysis, wettability, wood

1 Introduction

The presented work integrates a larger study about the stability of the properties conferred by the heat treatment of wood. In this article are presented the first results of this study, the evolution of the mass, the wettability and the color of heat-treated wood in function of the temperature treatment. Many works have already been done on the evolution of mass and color (Acharya et al. 2012; Herrera-Díaz et al. 2019; Sivrikaya et al. 2019; Xu et al. 2019). We have chosen to work on two European wood species, commonly used in industry (beech and fir). The process is deliberately carried out beyond the normal heat treatment temperature (230 °C) to go into the area of low wood pyrolysis (300 °C) in order to be able to observe the temperature influence. The results which are presented here are in good agreement with the literature, except the work on the wettability, the results are different from what can be found in the literature (Hakkou et al. 2005; Pétrissans et al. 2003). Using the Wilhelmy method, to characterize the wettability, which seems to us to be the most suitable, unlike the very used method of the sessile drop; we observe a strong evolution of the advancing contact angle. There is also a strong correlation with the thermal transformation parameters, here the temperature. The evolution is almost linear. The receding contact angle remains constant and equal to zero. The hydrophilic wood becomes hydrophobic after heat treatment. More the wood is treated, more the wood becomes hydrophobic. Obtaining an advancing contact angle = 90°, completely prevents the sorption of water in the wood by capillarity. The wood is protected from liquid water and thus preserved from certain degradation agents. This point is interesting, but deserves to be confirmed over time, depending on the use that is made. This will be the subject of the overall study.

2 Material and methods

2.1 Wood heat treatment

We have chosen to work on heartwood with two European wood species, commonly used in industry. The wood species are: Beech (Fagus Sylvatica) and Fir (Abies Alba). The size of the sample heat treated is: 140mm*60mm*20mm (L*R*T). Wood heat treatment is realized under different temperature :120, 140, 160, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300°C. To perform the heat treatment, we used a reactor, placed in a controlled oven. The atmosphere is inert, using nitrogen.

Treatment process is realized as following drying of the samples for 48h at 103 °C, still mass stabilization, then we measured the weight (M1). The heat treatment is done from the room temperature to the target temperature, by an increasing of 2°C/min, the temperature constant during 120min and cooled to the room temperature without control of the decreasing of the temperature. After the heat treatment the weight is measured (M2), and the mass loss (ML) calculated:

ML = (M1 - M2)/M1

Equation 1

2.2 Wettability of wood

The advancing contact angles of beech and fir heat-treated at different temperatures were tested by the Wilhelmy method (Wålinder et al. 2001) with Krüss machine. We intercepted small samples
along the grain from the large specimens (140mm*60mm*20mm) before and after heat treatment for testing, and the specimens heat-treated at each temperature were tested 10 times. The length of the test is 24mm (consistent with the direction of L), the width is 1mm (consistent with the direction of R), the immersion depth is 10mm (consistent with the direction of T), and the immersion speed is 5mm/min. The final contact angle (advancing and receding) values is the average of 10 valid tests.

Figure 1 is a schematic diagram of the Wilhelmy method. Immersing a sample plate (width l) of wood into a probe liquid (water) along an immersion depth (h) and pulling it out allows the calculation of advancing and receding contact angles (θa, θr).

Figure 2 shows the force recorded by tensiometer as a function of immersion depth (h). The wetting forces (F, Fw, Fw*) applied on the plate and the immersion depth is measured during the test cycle. For the value of the forces the dynamic contact angles (θa, θr) can be calculated according to equation: $F_w = \cos\theta \gamma \frac{P}{l}$

where γ is the liquid surface tension and P is the sample perimeter.

2.3 Wood color

Color change of the heat-treated samples was measured by a Chroma Meter CR-410 spectrophotometer according to the CIELab system using three replicates. Based on the L*, a*, b* color coordinate system, L* represents the black-and-white axis; for black, L* = 0 and for white, L* = 100; a* represents red-green color based on the positive and negative axes and b* represents yellow-blue color (positive value to yellow, negative value to blue). There are two test pieces at each heat treatment temperature. The front and the back sides of the heat-treated samples of each collecting point were photographed. Therefore, the average value of 8 points is taken as the final value.

3 Results and discussion

3.1 Mass loss

Figure 3 is a graph of the mass loss trend of beech and fir at different temperatures. It can be seen from the figure that under the same conditions (Candelier et al. 2013), as the heat treatment temperature increases, the mass loss of the two types of wood shows an upward trend. Between 100-210°C, the mass loss does not change significantly. Between 210-300°C, the value of mass loss rises sharply. Compared to beech, the mass loss of fir is slightly lower, because the thermosensibility of the hemicelluloses of the hardwood is superior than the softwood, this phenomenon is consistent with the result of scholar Čermák P (Čermák et al. 2021).
3.2 Wood color (before and after heat treatment)

Figure 4 shows the color changes of beech and fir specimens under different mass loss. It can be seen from the figure that as the heat treatment temperature continues to increase, the color of the beech and fir specimens will become darker and darker, beech is obviously darker than fir. The color of these two woods before heat treatment is white or yellow. As the heat treatment temperature increases, the degree of white or yellow becomes lower and lower. This change is more obvious in beech than fir.

3.3 Wettability of Beech and Fir

Figure 5 and Figure 6 are the advancing contact angles of beech and fir heat-treated at different temperatures, tested by the Wilhelmy method. All the measurement of the receding contact angle are equal to zero, that means that before and after the treatment the wood cannot be dewetted by the water, this result is in good accordance with the literature (Hakkou et al. 2005; Moghaddam et al. 2016). It can be seen from the figure that the advancing contact angles of beech and fir both show a trend of increasing first, then flattening, and finally increasing. The contact angle of the beech wood specimen increased from room temperature to 103°C, tended to a constant state at 103°C-160°C, and continued to increase at 160°C-275°C. The contact angle of fir specimens increases from room temperature to 60°C, tends to be constant at 60°C-120°C, and continues to increase at 120°C-300°C.

In these conditions we can observe the great dependance between the wettability (advancing contact angle) and the temperature of the treatment. The wood has a hydrophilic character before the treatment and became hydrophobic after. Upper than 90°, due to the physical law (Jurin law) the capillary rising is equal to zero, that means that the water cannot be sorbed by the wood. This observation is very important for the preservation of the wood. Protected to the water, his durability increase.
4. Conclusion

The results obtained on mass loss and color are in good agreement with the literature. The wood loses its mass as the temperature increases. The evolution is stronger for the beech than for the fir. This phenomenon is well known, it is due to the thermosensitivity of the hemicelluloses of the hardwood (beech) which is greater than that of the softwood (fir). Regarding the color, the increasing of the treatment temperature, the wood became darker and then black. This color change is generated by the thermodegradation of biopolymers. Concerning the wettability, we observe a strong evolution of the advancing contact angle. There is also a strong correlation with the thermal transformation parameters, here the temperature. The evolution is almost linear. The receding contact angle remains constant and equal to zero. The hydrophilic wood becomes hydrophobic after heat treatment. The higher treatment temperature, the more hydrophobic will become. Obtaining an advancing contact angle = 90°, completely prevents the sorption of water in the wood by capillarity. The wood is protected from liquid water and thus preserved from certain degradation agents. This point is interesting, but deserves to be confirmed over time, depending on the use that is made. This will be the subject of the overall study.

Références:

